ERGEBNISPROTOKOLL Nr. 12-01/ Blatt 2/2

Werte für Bohrwiderstandsmessungen am Tympanon Schloss Leuben / Messung: Geotron Etektronik 2011

MP = Messpunkt (Bezeichnung Geotron); BW = Bohrwiderstand; MK = Messpunkt Musterkonservierung

MP	10	MP	11	MP	12	MP	13	MP	14	MP	15	MP	16	MP	17
	(- b		- c		.7		19	2.			.6		.9	Refer	
Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW
0,06	s/mm 0,16	cm 0,10	s/mm 1,16	cm 0,05	s/mm 0,97	0,06	s/mm 0,28	cm 0,03	s/mm 0,86	0,03	s/mm 0,53	cm 0,06	s/mm 0,42	cm 0.04	s/mm 0,61
0,08	0,16	0,16	2,27	0,05	1,22	0,00	0,20	0,03	0,86	0,03	0,55	0,08	0,42	0,04	0,58
0,16	0,17	0,19	4,33	0,12	1,22	0,16	0,31	0,11	0,86	0,12	0,53	0,22	0,47	0,13	0,61
0,19	0,20	0,24	6,38	0,16	1,33	0,23	0,33	0,14	0,86	0,17	0,58	0,25	0,53	0,16	0,55
0,22	0,22	0,27	7,21	0,19	1,39	0,30	0,36	0,17	0,94	0,21	0,61	0,32	0,55	0,20	0,64
0,26	0,25	0,30	7,76	0,22	1,47	0,33	0,42	0,21	0,92	0,26	0,58	0,37	0,58	0,24	0,64
0,29	0,29	0,33	8,10	0,26	1,50	0,37	0,39	0,25	0,97	0,31	0,61	0,41	0,67	0,29	0,61
0,32	0,33	0,36	8,12 8,07	0,29	1,53 1,50	0,41 0,45	0,47 0,47	0,29	1,00	0,34	0,61	0,44	0,69 0,72	0,35	0,61 0,53
0,38	0,34	0,39	7,99	0,36	1,36	0,43	0,50	0,36	1,00	0,33	0,64	0,49	0,72	0,39	0,50
0,45	0,36	0,45	7,15	0,40	1,19	0,55	0,47	0,39	1,03	0,48	0,67	0,55	0,78	0,47	0,53
0,48	0,43	0,49	5,30	0,44	1,11	0,59	0,50	0,43	1,16	0,52	0,69	0,59	0,78	0,51	0,50
0,52	0,41	0,53	2,88	0,48	0,92	0,64	0,55	0,47	1,22	0,55	0,69	0,64	0,78	0,54	0,53
0,56	0,43	0,56	2,44	0,52	0,89	0,69	0,55	0,50	1,36	0,60	0,72	0,69	0,89	0,59	0,44
0,60	0,44	0,60	2,50	0,56	0,80	0,75	0,50	0,54	1,64	0,64	0,67	0,73	0,86	0,63	0,44
0,63 0,66	0,46 0,47	0,64	2,27 2,25	0,62 0,67	0,72 0,69	0,79 0,83	0,50 0,50	0,57 0,61	2,00 2,77	0,69 0,72	0,64 0,64	0,78	0,80	0,69	0,42
0,71	0,50	0,71	2,77	0,71	0,67	0,87	0,55	0,65	2,94	0,72	0,58	0,85	0,78	0,72	0,39
0,75	0,50	0,75	5,10	0,77	0,69	0,93	0,64	0,68	2,99	0,83	0,58	0,90	0,80	0,84	0,39
0,79	0,54	0,78	5,68	0,82	0,64	1,00	0,64	0,71	3,08	0,89	0,55	0,93	0,75	0,91	0,33
0,84	0,49	0,82	5,77	0,87	0,67	1,03	0,67	0,75	2,99	0,93	0,53	0,96	0,78	0,96	0,42
0,87	0,49	0,85	5,74	0,93	0,67	1,09	0,61	0,78	3,13	0,96	0,53	1,02	0,75	1,01	0,39
0,90	0,49	0,88	5,49	0,98	0,69	1,14	0,61	0,82	2,97	1,00	0,53	1,07	0,75	1,06	0,39
0,93	0,51 0,49	0,91	4,99 4,99	1,03	0,92 1,08	1,19	0,61 0,61	0,85 0,89	2,75 2,75	1,03	0,58 0,67	1,11	0,75 0,72	1,09	0,42
1,01	0,49	0,94	5,02	1,13	1,14	1,22	0,50	0,89	2,75	1,06	0,67	1,17	0,72	1,13	0,44
1,04	0,44	1,02	4,77	1,16	1,30	1,31	0,44	0,96	2,86	1,13	0,69	1,20	0,69	1,25	0,47
1,07	0,47	1,06	2,25	1,19	1,36	1,36	0,33	0,99	2,77	1,17	0,75	1,26	0,67	1,28	0,47
1,10	0,45	1,10	1,66	1,22	1,39	1,49	0,31	1,03	2,63	1,21	0,75	1,30	0,69	1,32	0,44
1,15	0,44	1,15	1,50	1,26	1,41	1,58	0,22	1,06	2,52	1,27	0,78	1,34	0,72	1,36	0,36
1,19	0,43	1,19	1,47	1,30	1,44	1,69	0,22	1,09	2,33	1,30	0,69	1,38	0,72	1,39	0,36
1,22 1,25	0,41 0,35	1,24 1,28	1,36	1,34	1,41 1,16	1,78	0,19	1,13 1,20	2,25 2,16	1,34	0,75 0,75	1,42	0,67 0,69	1,44	0,44 0,53
1,28	0,33	1,32	1,14	1,41	1,03	2,00	0,17	1,24	1,80	1,44	0,78	1,51	0,69	1,58	0,53
1,33	0,46	1,36	0,94	1,46	1,03	2,07	0,19	1,28	0,72	1,48	0,83	1,56	0,69	1,65	0,61
1,37	1,26	1,41	0,58	1,51	0,86	2,17	0,22	1,34	0,67	1,51	0,78	1,61	0,64	1,68	0,64
1,42	3,90	1,46	0,58	1,56	0,83	2,25	0,25	1,38	0,69	1,56	0,78	1,68	0,61	1,71	0,69
1,46	4,33	1,56	0,67	1,59	0,80	2,32	0,25	1,41	0,75	1,60	0,78	1,71	0,67	1,77	0,67
1,49	4,90	1,65	0,64	1,64	0,97	2,39	0,25	1,45	0,78	1,65	0,83	1,75	0,69	1,80	0,69
1,52 1,55	5,67 6,77	1,76 1,80	0,64	1,69 1,73	0,97 1,03	2,44 2,48	0,25 0,28	1,48 1,52	0,75 0,80	1,70 1,75	0,86	1,79 1,82	0,67 0,67	1,86	0,69 0,61
1,55	6,77	1,84	0,64	1,78	1,08	2,40	0,26	1,56	0,83	1,80	0,86	1,85	0,67	1,99	0,55
		1,87	0,69	1,82	1,08	2,63	0,53	1,61	0,78	1,83	0,80	1,89	0,72	2,05	0,53
		1,91	1,25	1,86	1,03	2,75	0,67	1,66	0,75	1,87	0,94	1,93	0,75	2,12	0,44
		1,96	3,22	1,89	1,11	2,85	0,69	1,71	0,72	1,91	1,00	1,97	0,75	2,17	0,42
		2,00	3,41	1,94	1,08	2,89	0,75	1,75	0,67	1,95	1,03	2,02	0,75	2,21	0,42
		2,05	3,24	1,98	1,05	2,94	0,83	1,80	0,61	1,99	1,05	2,08	0,80	2,25	0,42
		2,09	3,24 3,47	2,01 2,05	0,83 0,78	2,98 3,03	0,89 0,97	1,84 1,87	0,58 0,50	2,02	1,03	2,14	0,78 0,78	2,29	0,44 0,53
		2,15	6,57	2,09	0,78	3,06	1,03	1,93	0,30	2,03	1,03	2,25	0,75	2,36	0,53
		2,19	7,35	2,14	0,67	3,10	1,03	1,97	0,39	2,12	1,11	2,28	0,75	2,42	0,61
		2,24	8,32	2,18	0,53	3,15	1,05	2,07	0,36	2,16	1,19	2,32	0,80	2,45	0,67
		2,28	8,85	2,22	0,44	3,18	1,19	2,26	0,64	2,20	1,08	2,36	0,89	2,49	0,72
		2,31	7,04	2,26	0,39	3,22	1,28	2,49	0,80	2,24	1,08	2,40	0,97	2,52	0,72
				2,33	0,33	3,25	1,33	2,58	0,86	2,28	1,08	2,43	0,97	2,55	0,69
			\vdash	2,43 2,56	0,39	3,29	1,39	2,64 2,67	0,94 1,08	2,32 2,36	1,16	2,46 2,50	0,94 1,08	2,58	0,72
			\vdash	2,66	0,42	3,36	1,61	2,71	1,28	2,41	1,22	2,55	1,08	2,69	0,75
				2,70	0,55	3,00	.,01	2,71	.,20	2,45	1,22	2,59	1,08	2,73	0,67
				2,74	0,75					2,49	1,25	2,62	1,08	2,76	0,69
				2,79	0,83					2,54	1,22	2,66	1,03	2,79	0,69
				2,83	0,97					2,58	1,47	2,70	1,16	2,86	0,69
				2,86	1,03					2,62	1,91	2,75	1,55	2,91	0,69
			\vdash	2,89	1,22	\vdash	\vdash			2,65	2,00	2,78	2,44	2,95	0,72
				2,94 2,97	2,38					2,69 2,72	2,05 2,27	2,82 2,85	2,50 2,52	2,99 3,04	0,75 0,72
				3,01	2,33					2,75	2,30	2,89	2,77	5,04	5,72
				3,05	2,47					2,79	2,44	2,92	3,19		
				3,09	2,55					2,82	2,58	2,95	3,60		
				3,12	2,80					2,86	2,77				
				3,16	3,08					2,90	2,72				

ERGEBNISPROTOKOLL Nr. 12-02/ Blatt 1/2

Werte für Bohwiderstandmessungen in Raum 012/ Ostwand, Schloss Leuben / Messung: Geotron Elektronk 2011

MP = Messpunkt (Bezeichnung Geotron); BW = Bohrwiderstand; MK = Messpunkt Musterkonservierung

	P 1		P 2		9 3		P 4		P 5		96		P 7		8
Weg	BW	Weg	6 BW	14 Weg	-1 BW		-2 BW								
cm	s/mm	Weg cm	s/mm												
0.04	0,58	0,03	1,16	0,04	0,49	0,05	0,27	0,03	0,47	0.04	0,19	0.03	0,51	0,03	1,16
0,07	0,52	0,07	1,22	0,08	0,47	0,11	0,26	0,06	0,43	0,07	0,19	0,06	0,52	0,07	1,17
0,10	0,47	0,11	1,25	0,12	0,46	0,14	0,24	0,10	0,42	0,13	0,20	0,10	0,57	0,11	1,15
0,16	0,44	0,15	1,24	0,16	0,44	0,18	0,23	0,13	0,39	0,18	0,19	0,13	0,60	0,14	1,06
0,20	0,45	0,18	1,34	0,19	0,47 0,47	0,23	0,26	0,16	0,40	0,21	0,18	0,16	0,64	0,17	1,08
0,24	0,34 0,25	0,21 0,24	1,42 1,54	0,22 0,25	0,47	0,29 0,35	0,25 0,23	0,20 0,24	0,37	0,27	0,18 0,16	0,20	0,62 0,61	0,20	1,03 0,86
0,32	0,21	0,27	1,55	0,30	0,46	0,38	0,23	0,29	0,29	0,39	0,17	0,26	0,54	0,27	0,73
0,36	0,19	0,30	1,54	0,34	0,37	0,41	0,20	0,34	0,27	0,42	0,17	0,29	0,52	0,31	0,55
0,43	0,21	0,34	1,29	0,37	0,28	0,49	0,22	0,38	0,26	0,46	0,17	0,33	0,47	0,34	0,47
0,49	0,23	0,37	1,18	0,41	0,26	0,52	0,23	0,43	0,27	0,50	0,16	0,36	0,42	0,40	0,35
0,52	0,26	0,40	1,07	0,48	0,30	0,56	0,24	0,46	0,26	0,54	0,17	0,41	0,33	0,43	0,28
0,57 0,61	0,27	0,43	0,98 0,88	0,51 0,54	1,72 6,75	0,60	0,24	0,50	0,26 0,28	0,57 0,61	0,18	0,44	0,29 0,25	0,49	0,26 0,24
0,65	0,34	0,49	0,77	0,59	7,54	0,69	0,26	0,59	0,29	0,65	0,13	0,54	0,26	0,57	0,22
0,68	0,37	0,52	0,65	0,62	8,57	0,74	0,28	0,63	0,29	0,69	0,22	0,58	0,25	0,61	0,24
0,73	0,38	0,55	0,55	0,65	9,99	0,77	0,27	0,66	0,30	0,72	0,23	0,61	0,27	0,66	0,23
0,76	0,39	0,60	0,39	0,68	11,94	0,80	0,27	0,69	0,31	0,76	0,22	0,66	0,26	0,70	0,26
0,79	0,42	0,65	0,27	<u> </u>		0,85	0,24	0,72	0,30	0,81	0,24	0,71	0,25	0,73	0,30
0,83	0,43	0,68 0,74	0,22	_		0,89	0,26 1,28	0,77	0,31 0,45	0,85	0,24	0,75 0,80	0,29	0,76 0,80	0,33 0,35
0,92	0,40	0,80	0,13			0,99	3,65	0,86	0,43	0,95	0,24	0,84	0,30	0,85	0,38
0,95	0,39	0,85	0,20			1,03	4,06	0,90	1,78	0,99	0,22	0,89	0,29	0,88	0,42
0,99	0,37	0,89	0,21			1,06	4,61	0,97	1,95	1,05	0,21	0,93	0,30	0,92	0,43
1,03	0,33	0,93	0,22			1,09	5,32	1,01	2,20	1,08	0,18	0,97	0,34	0,95	0,44
1,06	0,32	0,96	0,27	_		1,12	6,32	1,04	2,49	1,11	0,16	1,03	0,37	0,98	0,44
1,10	0,32	0,99 1,05	0,27 0,29					1,07	2,94	1,16 1,21	0,17	1,06	0,38 0,38	1,02	0,46 0,44
1,19	0,33	1,10	0,23							1,34	0,13	1,12	0,36	1,08	0,44
1,22	0,34	1,13	0,37							1,50	0,38	1,16	0,40	1,12	0,43
1,26	0,31	1,19	0,38							1,55	0,40	1,20	0,42	1,15	0,42
1,30	0,29	1,23	0,36							1,59	0,42	1,24	0,41	1,19	0,39
1,35	0,29	1,28	0,37							1,62	0,43	1,28	0,41	1,22	0,38
1,40	0,29	1,33	0,34	_						1,66 1,69	0,47 1,03	1,31 1,35	0,37 0,36	1,27 1,31	0,36 0,36
1,44	0,29	1,42	0,33							1,73	2,05	1,39	0,36	1,36	0,34
1,52	0,44	1,45	0,33							1,76	2,24	1,43	0,36	1,39	0,34
1,56	4,48	1,48	0,30							1,82	2,39	1,48	0,36	1,45	0,28
1,59	6,78	1,51	0,25							1,85	2,66	1,51	0,33	1,48	0,28
1,64	7,32	1,56	0,26	_						1,88	3,09	1,55	0,34	1,51	0,28
1,67	8,21 9,35	1,59 1,65	0,26 0,26	_								1,58 1,62	0,34	1,55 1,60	0,27 0,25
1,73	10,88	1,70	0,25									1,66	0,34	1,63	0,24
1,76	12,98	1,73	0,24									1,69	0,33	1,67	0,21
		1,76	0,24									1,74	0,33	1,71	0,17
\vdash		1,80	0,33									1,78	0,36	1,74	0,16
\vdash		1,87 1,92	1,67 1,86	_								1,82 1,86	0,43 0,46	1,80 1,86	0,17 0,17
\vdash		1,92	2,07									1,90	0,46	1,86	0,17
		1,99	2,38									1,95	0,43	2,00	0,17
		2,02	2,79									1,99	0,43	2,04	0,75
\vdash												2,02	0,39	2,08	1,52
\vdash												2,08	0,42	2,13	1,70
\vdash				—								2,11 2,15	0,44	2,17 2,20	1,93 2,24
\vdash	\vdash			-								2,13	0,45	2,23	2,63
												2,24	0,57	,,_,	,,,,,
												2,27	0,66		
\vdash												2,31	0,75		
\vdash				_								2,36 2,39	0,81 0,85		
\vdash				_								2,39	0,85		
												2,46	0,91		
												2,49	0,95		
												2,53	0,96		
												2,57	1,12		
\vdash	\vdash			<u> </u>								2,60	1,35		
\vdash				_								2,64 2,67	1,38		
												2,70	1,64		
												2,73	1,96		

ERGEBNISPROTOKOLL Nr. 12-02/ Blatt 2/2

Werte für Bohwiderstandmessungen in Raum 012/ Ostwand, Schloss Leuben / Messung: Geotron Elektronk 2011

MP = Messpunkt (Bezeichnung Geotron); BW = Bohrwiderstand; MK = Messpunkt Musterkonservierung

MF			10		11		12		14		15	MP	
Weg 14	-3 BW	15 Weg	BW	Weg	5-2 BW	Weg	5-3 BW	Mr Weg	(-1 BW	Mi Weg	K-2 BW	Weg	G-3 BW
cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm
0,04	0,55	0,03	0,44	0,05	0,42	0,08	0,32	0,03	0,69	0,04	0,97	0,06	8,64
0,08	0,58	0,06	0,40	0,08	0,41	0,13	0,36	0,06	0,70	0,07	0,98	0,09	8,64
0,11	0,65	0,10	0,40	0,12	0,38	0,17	0,37	0,09	0,66	0,11	1,01	0,12	8,64
0,14	0,67	0,13	0,38	0,16	0,36 0,38	0,21	0,41	0,13	0,66	0,14	1,00	0,15 0,18	8,64 10,35
0,13	0,68	0,20	0,34	0,13	0,35	0,29	0,50	0,20	0,43	0,20	1,20	0,10	10,00
0,25	0,65	0,24	0,27	0,26	0,28	0,33	0,50	0,23	0,40	0,23	1,02		
0,28	0,58	0,29	0,23	0,29	0,26	0,36	0,48	0,26	0,38	0,27	1,03		
0,31	0,51	0,34	0,18	0,32	0,23	0,40	0,42	0,32	0,38	0,30	0,95		-
0,34	0,48	0,46 0,53	0,16 0,16	0,40	0,21 0,21	0,44	0,38	0,35	0,34	0,33	0,84		
0,44	0,33	0,58	0,15	0,47	0,21	0,52	0,30	0,43	0,24	0,39	0,62		
0,49	0,26	0,62	0,19	0,53	0,20	0,56	0,22	0,47	0,19	0,43	0,54		
0,52	0,24	0,67	0,20	0,56	0,17	0,59	0,18	0,54	0,18	0,46	0,36		
0,55	0,23	0,72	0,22	0,59 0,67	0,17 0,17	0,63 0,67	0,15 0,15	0,59	0,18 0,17	0,50 0,54	0,27		
0,63	0,21	0,80	0,25	0,73	0,17	0,74	0,13	0,63	0,17	0,54	0,28		
0,67	0,21	0,87	0,32	0,78	0,20	0,79	0,14	0,71	0,14	0,62	0,15		
0,70	0,23	0,92	0,44	0,84	0,27	0,84	0,13	0,76	0,14	0,67	0,15		
0,76	0,24	0,96	0,54	0,89	0,42	0,88	0,23	0,81	0,15	0,71	0,14		
0,81	0,25	1,01	0,67 0,78	0,92 0,96	0,66 0,91	0,92 0,97	0,48 1,36	0,86	0,17	0,77	0,17 0,17		
0,85	0,28	1,04	0,78	1,01	1,35	1,02	5,84	0,90	0,18	0,81	0,17		-
0,91	0,29	1,10	0,94	1,04	1,85	1,05	6,55	1,01	0,21	0,88	0,22		
0,95	0,31	1,14	0,95	1,08	2,42	1,08	7,47	1,05	0,22	0,91	0,21		
0,99	0,31	1,17	0,98	1,11	2,83	1,11	8,69	1,09	0,23	0,95	0,24		
1,03	0,34	1,20 1,24	0,94	1,14	3,02	1,14	10,40	1,13	0,21 0,24	0,98	0,27		-
1,13	0,34	1,29	0,70	1,20	2,86			1,10	0,24	1,08	0,28		-
1,16	0,30	1,32	0,56	1,23	2,65			1,24	0,24	1,11	0,31		
1,19	0,29	1,36	0,39	1,26	3,93			1,31	0,23	1,14	0,33		
1,24	0,30	1,43	0,27	1,29	3,91			1,34	1,11	1,18	0,38		
1,29	0,30	1,47 1,53	0,22	1,32	3,80 3,57			1,40 1,44	1,89 2,11	1,21	0,44		
1,37	0,31	1,60	0,13	1,40	3,48			1,49	2,37	1,30	0,49		-
1,40	0,28	1,66	0,10					1,52	2,75	1,33	0,51		
1,43	0,29	1,69	0,10					1,55	3,23	1,37	0,55		
1,46	0,43	1,76	0,09							1,40	0,53		
1,51 1,55	0,84 3,01	1,87 2,03	0,08							1,44 1,48	0,57 0,57		
1,58	3,34	2,16	0,08							1,51	0,52		
1,62	3,76	2,26	0,07							1,56	0,52		
1,65	4,33	2,36	0,10							1,59	0,54		
1,68	5,14	2,44 2,49	0,10							1,63 1,67	0,60		
\vdash		2,49	0,11							1,70	0,56		
		2,58	0,13							1,74	0,58		
		2,63	0,13							1,77	0,57		
$\vdash \vdash$		2,68	0,13		\vdash					1,81	0,55		-
\vdash		2,73 2,79	0,12 0,13							1,84 1,87	0,55 0,53		-
$\vdash\vdash$		2,79	0,13		$\vdash \vdash$			\vdash		1,87	0,53		-
		3,01	0,14							1,96	0,44		
\Box		3,07	0,14							1,99	0,44		
$\vdash \vdash$		3,11	0,17							2,03	0,44		
$\vdash\vdash$		3,16	0,17 0,18							2,06 2,10	0,44 0,47		-
		3,23	0,10							2,14	0,47		
		3,26	0,23							2,17	0,52		
										2,20	0,55		
\vdash					\vdash					2,23	0,59	-	-
\vdash										2,27	0,63 0,71		
\vdash										2,33	0,71		
										2,36	0,77		
\Box										2,39	0,82		
$\vdash \vdash$					\vdash			\vdash		2,42	0,90		-
\vdash										2,47 2,50	0,88		-
										2,53	0,92		-
										2,57	0,94		
\Box										2,60	0,90		
\vdash										2,64 2,67	0,93		
\vdash					\vdash					2,07	0,97		-
$\overline{}$										2,71	0,01		

ERGEBNISPROTOKOLL Nr. 12-03/ Blatt 1/10

Werte für Bohrwiderstandsmessungen im Weißen Saal Schloss Dahlen / Messung: Geotron Etektronik 2010 MP = Messpunkt (Geotron); BW = Bohrwiderstand; UP = Unterputz; WS = weißer Stuck; SM = Stuckmörtel

	MP2	MP3	MP4	MP5	MP6	MP7	MP8	MP9	MP10
	UP-U1	UP-U2	UP-U3	UP-U4	UP-U5	UP-U6	WS-U1	WS-U2	WS-U3
Weg	BW								
cm	s/mm								
0.00	0,30	0,43	0,25	0,35	0,55	0,15	1,85	0,70	0,50
0,02	0,33	0,48	0,29	0,33	0,54	0,23	1,79	1,08	0,60
0,04	0,32	0,46	0,34	0,32	0,64	0,21	2,04	1,14	0,70
0,06	0,36	0,53	0,34	0,30	0,61	0,19	2,30	1,16	0,67
0,08	0,42	0,53	0,35	0,31	0,57	0,18	2,40	1,21	0,83
0,10	0,49	0,54	0,44	0,33	0,71	0,29	2,72	1,39	1,10
0,12	0,61	0,51	0,51	0,26	0,72	0,36	2,90	1,57	1,11
0,14	0,74	0,49	0,47	0,24	0,69	0,43	2,90	1,64	1,24
0,16	0,76	0,40	0,61	0,24	0,71	0,44	2,94	1,60	1,42
0,18	0,81	0,47	0,63	0,25	0,79	0,51	2,90	1,58	1,40
0,20	0,81	0,43	0,83	0,25	0,75	0,49	3,15	1,35	1,57
0,22	0,85	0,46	0,86	0,25	0,68	0,64	2,90	1,47	1,79
0,24	0,78	0,38	0,90	0,25	0,71	0,67	2,47	1,67	2,06
0,26	0,78	0,42	1,25	0,26	0,78	0,88	2,28	1,75	1,94
0,28	0,78	0,47	1,22	0,29	0,76	0,90	2,53	1,76	1,99
0,30	0,68	0,51	1,35	0,32	0,76	0,83	2,50	1,68	2,06
0,32	0,54	0,50	1,43	0,35	0,75	0,90	2,54	1,69	2,24
0,34	0,51	0,58	1,38	0,39	0,74	1,03	2,67	2,00	2,21
0,36	0,44	0,56	1,44	0,44	0,76	1,06	2,68	2,17	2,57
0,38	0,40	0,63	1,35	0,44	0,88	1,11	2,67	2,35	2,46
0,40	0,35	0,65	1,47	0,51	0,94	1,01	2,71	2,25	2,24
0,42	0,36	0,72	1,56	0,56	0,94	1,17	2,93	2,25	2,11
0,44	0,28	0,71	1,18	0,51	0,93	1,15	3,14	2,13	2,24
0,46	0,26	0,65	1,31	0,51	0,99	1,17	2,99	2,26	2,18
0,48	0,25	0,72	1,15	0,58	1,06	1,35	3,18	2,29	2,22
0,50	0,21	0,79	1,19	0,58	1,06	1,47	3,49	2,44	2,17
0,52	0,25	0,82	1,13	0,50	1,07	1,74	3,32	2,22	2,10
0,54	0,24	1,03	1,11	0,51	1,00	1,94	3,28	1,92	1,85
0,56	0,22	1,13	1,00	0,60	1,14	2,25	3,39	1,71	1,85
0,58	0,22	1,08	0,99	0,53	1,19	2,99	3,79	1,60	1,90
0,60	0,26	1,11	0,85	0,57	1,13	3,28	3,89	1,40	1,94
0,62	0,36	1,11	0,93	0,69	1,17	3,51	3,72	1,32	1,90
0,64	0,35	1,15	0,82	0,99	1,29	3,89	3,35	1,26	2,00
0,66	0,38	1,13	0,82	1,06	1,44	3,89	3,13	1,14	2,00
0,68	0,43	1,24	0,75	1,32	1,43	3,64	2,85	0,82	1,86
0,70	0,42	1,18	0,78	1,46	1,58	3,35	4,81	0,71	1,92
0,72	0,47	0,99	0,86	1,57	1,64	3,39	6,96	0,72	1,92
0,74	0,56	0,82	1,25	1,94	1,61	3,47	9,47	0,67	2,04
0,76	0,63	0,78	1,96	2,10	1,76	4,01	13,79	0,58	2,04
0,78	0,67	0,76	3,04	2,19	2,08	4,29	16,86	0,46	2,17
0,80	0,64	0,75	3,61	2,31	2,10	5,06	18,21	0,40	2,11
0,82	0,65	0,76	3,83	2,08	1,94	5,25	18,94	0,13	2,19
0,84	0,67	0,75	3,89	2,01	1,86	5,15	21,47	0,10	2,46
0,86	0,65	0,60	3,93	1,82	1,94	5,29	24,36	0,07	2,83
0,88	0,61	0,63	4,32	1,71	1,90	5,31	23,04	0,04	3,29
0,90	0,56	0,63	4,47	1,58	2,13	5,22	20,99	0,04	3,63
0,92	0,49	0,68	4,08	1,14	1,94	5,08	18,57	0,03	3,94
0,94	0,40	0,76	3,33	1,07	1,99	4,26	14,50	0,03	4,46
0,96	0,32	0,69	2,36	0,96	1,92	3,64	11,67	0,01	4,61

ERGEBNISPROTOKOLL Nr. 12-03/ Blatt 2/10

(FORTSETZUNG)

	MP2	MP3	MP4	MP5	MP6	MP7	MP8	MP9	MP10
	UP-U1	UP-U2	UP-U3	UP-U4	UP-U5	UP-U6	WS-U1	WS-U2	WS-U3
Weg	BW								
cm	s/mm								
0,98	0,25	0,92	1,76	0,75	1,93	2,54	10,31	0,01	4,97
1,00	0,19	1,40	1,58	0,74	2,10	1,99	10,65	0,01	5,10
1,02	0,14	1,51	1,56	0,69	2,26	1,97	8,19	0,01	5,11
1,04	0,10	1,69	1,51	0,79	2,31	1,89	5,82	0,01	4,78
1,08	0,08		0,78	0,92	2,43	1,58	5,42	0,00	3,92
1,10	0,07		0,72	0,96	2,50	1,32	5,13	0,00	3,46
1,12	0,07		0,56	0,90	2,31	0,79	4,31	0,00	3,11
1,14	0,06		0,42	1,10	2,22	0,74	3,74	0,01	2,67
1,16	0,04		0,35	1,17	2,15	0,76	4,17	0,01	2,31
1,18	0,07		0,22	1,14	1,92	0,88	3,13	0,01	2,03
1,20	0,08		0,15	1,19	1,69	1,10	2,72	0,01	1,63
1,22	0,17		0,08	1,17	1,63	1,63	1,96	0,01	1,69
1,24	0,35		0,04	1,07	1,46	2,32	2,26	0,01	1,69
1,26	1,29		0,03	1,07	1,18	3,65	2,43	0,01	1,68
1,28			0,03	1,07	1,26	4,14	2,38	0,01	1,74
1,32			0,03		1,24		3,17	0,00	1,61
1,34			0,03		1,36		4,50	0,00	1,63
1,36			0,03		1,49		4,94	0,00	1,54
1,38			0,03		1,79		5,28	0,00	1,49
1,40			0,03		2,08		5,67	0,00	1,42
1,42			0,03		2,18		5,64	0,01	1,31
1,44			0,03		2,53		5,31	0,01	1,36
1,46			0,03		2,71		5,56	0,01	1,24
1,48			0,04		2,82		5,67	0,01	1,24
1,52			0,05		3,32		4,39	0,01	1,43
1,54					3,61		4,06	0,01	1,69
1,56					3,67		4,32	0,03	2,08
1,58					3,54		4,26	1,18	2,24
1,60					3,61		3,88	1,38	2,51
1,62					3,44		3,92	1,82	2,82
1,64					3,35		3,96	1,99	3,08
1,66					3,26		4,24	2,31	3,42
1,68					3,13		4,63	2,58	3,36
1,70					2,93		4,89	2,79	3,61
1,72					2,75		5,10	3,00	3,50
1,74					2,67		6,00	3,24	3,50
1,76					2,53		6,82	2,38	3,49
1,78					2,33		8,17	2,36	3,50
1,80					2,11		8,85	1,97	3,54
1,82					1,94		9,21	1,90	3,71
1,84					2,01		9,33	1,63	3,71
1,86					1,88		8,99	1,40	3,86
1,88					1,64		9,11	1,28	3,94
1,90					1,47		10,13	1,11	4,08
1,92					1,17		9,21	0,89	4,36
1,94					1,14		9,18	0,61	4,76
1,96					1,15		8,79	0,46	5,25
1,98					1,14		8,51	0,42	5,58
2,00					1,15		8,58	0,32	5,94
2,02					0,94		9,24	0,28	6,64

ERGEBNISPROTOKOLL Nr. 12-03/ Blatt 3/10

Werte für Bohrwiderstandsmessungen im Weißen Saal Schloss Dahlen / Messung: Geotron Etektronik 2010 MP = Messpunkt (Geotron); BW = Bohrwiderstand; UP = Unterputz; WS = weißer Stuck; SM = Stuckmörtel

	MP11	MP12	MP13	MP14	MP15		MP11	MP12	MP13
	WS-U4	SM-U1	SM-U2	SM-U3	SM-U4	1	WS-U4	SM-U1	SM-U2
Weg	BW	BW	BW	BW	BW	Weg	BW	BW	BW
cm	s/mm	s/mm	s/mm	s/mm	s/mm	cm	s/mm	s/mm	s/mm
0.00	0,83	13,53	2,73	2,23	3,93	0,98	2,74	0,79	3,47
0,02	0,81	13,86	3,21	2,67	4,17	1,00	2,61	0,69	3,99
0,04	1,14	14,07	4,22	3,07	4,93	1,02	2,83	0,67	4,29
0,06	1,20	14,08	4,92	3,42	5,78	1,04	2,51	0,65	4,10
0,08	1,39	14,26	6,82	4,40	7,01	1,08	2,14	0,61	3,79
0,10	1,60	15,36	8,93	5,53	8,24	1,10	1,99	0,63	3,54
0,12	1,85	14,44	11,26	6,44	8,88	1,12	1,67	0,57	3,06
0,14	1,89	13,71	13,28	7,38	9,49	1,14	1,51	0,56	2,58
0,16	1,86	12,56	15,32	8,54	9,99	1,16	1,32	0,72	2,17
0,18	1,92	12,60	17,69	9,26	10,75	1,18	1,35	1,01	1,67
0,20	2,11	11,92	19,40	9,75	11,29	1,20	1,11	1,40	1,33
0,22	2,04	11,64	21,10	10,21	12,21	1,22	1,15	2,47	1,15
0,24	2,19	10,88	21,88	10,10	12,50	1,24	1,44		0,88
0,26	2,18	9,53	20,82	9,28	12,10	1,26	1,50		0,94
0,28	2,35	8,60	20,13	8,63	12,58	1,28	1,54		0,86
0,30	2,42	7,39	19,24	8,15	13,11	1,32	1,60		0,79
0,32	2,58	6,08	18,51	7,26	13,31	1,34	1,58		0,75
0,34	2,79	5,25	17,32	6,22	12,76	1,36	1,61		0,71
0,36	3,06	4,07	15,42	5,54	11,28	1,38	1,63		0,68
0,38	2,92	3,11	13,44	4,60	10,24	1,40	1,72		0,63
0,40	3,06	1,76	11,00	3,71	8,29	1,42	1,50		0,75
0,42	3,18	1,03	9,43	3,36	6,74	1,44	1,33		0,68
0,44	3,15	0,74	8,42	3,18	5,29	1,46	1,35		0,88
0,46	3,11	0,71	7,38	3,31	3,58	1,48	1,71		0,92
0,48	3,06	0,88	5,85	3,21	2,31	1,52	2,79		0,97
0,50	3,19	1,49	4,49	4,08	2,58	1,54	3,13		0,94
0,52	3,13	2,88	3,17	4,08	2,92	1,56	3,82		1,00
0,54	3,03	6,15	2,32	3,81	4,43	1,58	4,17		1,06
0,56	3,29	10,60	2,00	3,82	5,69	1,60	4,75		1,03
0,58	3,01	11,61	1,65	4,01	10,69	1,62	5,08		1,08
0,60	2,96	12,46	1,38	3,97	13,93	1,64	5,51		0,88
0,62	2,82	12,60	1,03	3,76	15,00	1,66	5,78		0,93
0,64	2,88	12,65	0,72	3,35	15,60	1,68	5,68		0,96
0,66	2,61	12,67	0,56	3,11	16,03	1,70	5,47		0,92
0,68	2,53	12,19	0,57	4,19	15,07	1,72	5,96		0,89
0,70	2,39	10,76	0,72		14,53	1,74	6,15		0,90
0,72	2,35	7,68	0,71		13,15	1,76	6,14		0,86
0,74	2,17	3,43	0,74		12,93	1,78	6,01		0,86
0,76	2,13	2,72	0,83		9,63	1,80	7,46		0,83
0,78	1,96	2,13	0,92		8,88	1,82	7,06		0,93
0,80	2,15	2,54	1,04		8,94	1,84	6,61		0,85
0,82	2,07	2,54	1,11		8,67	1,86	6,43		0,90
0,84	2,11	2,46	1,19		8,33	1,88	6,32		1,13
0,86	2,10	2,43	1,49		7,99	1,90	5,93		1,26
0,88	2,39	2,50	1,72		7,79	1,92	5,72		1,25
0,90	2,36	2,24	1,88		7,53	1,94	6,06		1,35
0,92	2,42	2,01	2,18		7,19	1,96	6,18		1,36
0,94	2,75	1,72	2,63		6,00	1,98	4,86		1,46
0,96	2,74	1,46	3,08		3,21	2,00	5,46		1,57

ERGEBNISPROTOKOLL Nr. 12-03/ Blatt4/10

Werte für Bohrwiderstandsmessungen im Weißen Saal Schloss Dahlen / Messung: Geotron Etektronik 2011

MF	² 16	MP	17	MF	20	MF	21	MF	22	MP	23		24
	3-1		3-2		0-1)-2		2-1		2-2	22.	Jan
Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW
cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm
0,03	1,9	0,04	1,81	0,03	3,16	0,06	4,14	0,04	3,06	0,04	0,32	0,04	2,11
0,06	1,90	0,07	1,60	0,06	3,29	0,09	4,24	0,07	3,45	0,09	0,54	0,07	2,44
0,09	1,94	0,10	1,42	0,09	3,48	0,12	4,39	0,10	3,60	0,13	0,73	0,10	2,84
0,12	2,06	0,13	1,28	0,12	3,61	0,15	4,41	0,13	3,56	0,19	1,01	0,14	3,08
0,15	2,28	0,16	1,24	0,15	4,13	0,18	4,98	0,16	3,70	0,22	1,31	0,17	3,27
0,19	2,47	0,20	1,11	0,19	4,55	0,21	5,34	0,19	3,54	0,25	1,54	0,20	3,37
0,22	2,49	0,24	1,03	0,22	5,04	0,24	5,25	0,22	3,17	0,28	1,64	0,23	3,49
0,25	2,48	0,29	0,85	0,25	5,08	0,27	5,03	0,25	2,70	0,31	1,65	0,26	3,49
0,28	2,48	0,40	0,68	0,28	5,26	0,30	4,88	0,28	2,40	0,34	1,67	0,29	3,11
0,31	2,23	0,45	0,44	0,31	5,46	0,33	4,43	0,32	2,30	0,37	1,63	0,33	2,47
0,34	2,03	0,48	0,47	0,34	5,65	0,36	3,94	0,39	2,17	0,40	1,46	0,36	2,05
0,38	1,81	0,51	0,49	0,37	5,34	0,39	3,35	0,55	2,23	0,44	1,26	0,39	1,48
0,41	1,51	0,55	0,51	0,40	4,89	0,42	2,85	0,59	2,17	0,47	0,93	0,42	0,98
0,44	1,30	0,59	0,54	0,43	4,32	0,45	2,29	0,62	2,66	0,50	0,65	0,45	0,83
0,49	1,05	0,62	0,50	0,46	3,60	0,49	1,75	0,65	3,57	0,54	0,41	0,48	0,79
0,58	0,77	0,66	0,38	0,49	2,86	0,55	1,09	0,68	3,87	0,58	0,32	0,53	0,74
0,62	0,60	0,70	0,33	0,52	2,31	0,60	0,75	0,71	4,09	0,63	0,34	0,58	0,65
0,65	0,36	0,74	0,37	0,68	1,67	0,65	0,39	0,74	3,99	0,68	0,35	0,61	0,67
0,69	0,25	0,78	0,48	0,71	1,17	0,69	0,30	0,77	3,73	0,72	0,36	0,65	0,65
0,74	0,28	0,82	0,61	0,75	0,56	0,74	0,29	0,80	3,23	0,77	0,37	0,68	0,70
0,77	0,27	0,87	0,62	0,78	0,42	0,77	0,34	0,83	2,67	0,80	0,40	0,71	0,81
0,81	0,27	0,90	0,61	0,81	0,42	0,81	0,43	0,86	2,40	0,84	0,42	0,74	1,38
0,86	0,27	0,94	0,60	0,85	0,46	0,85	0,46	0,90	1,75	0,88	0,43	0,77	1,52
0,89	0,29	0,97	0,64	0,89	0,46	0,89	0,46	0,93	0,80	0,91	0,45	0,80	1,52
0,97	0,31	1,01	0,64	0,92	0,46	0,92	0,48	0,97	0,50	0,94	0,47	0,84	1,49
1,03	0,30	1,06	0,63	0,95	0,44	0,96	0,48	1,01	0,26	0,97	0,43	0,87	1,53
1,07	0,34	1,10	0,60	0,99	0,41	1,00	0,51	1,06	0,16	1,00	0,43	0,90	1,51
1,10	0,36	1,13	0,51	1,02	0,43	1,03	0,56	1,12	0,12	1,04	0,44	0,93	1,55
1,15	0,35	1,17	0,35	1,05	0,42	1,06	0,58	1,19	0,14	1,08	0,43	0,97	1,48
1,18	0,39	1,21	0,35	1,09	0,37	1,09	0,56	1,27	0,16	1,12	0,41	1,00	1,35
1,22	0,40	1,25	0,39	1,13	0,35	1,13	0,50	1,33	0,15	1,15	0,41	1,04	0,74
1,25	0,41	1,29	0,40	1,17	0,36	1,16	0,51	1,38	0,17	1,18	0,43	1,07	0,58
1,29	0,41	1,33	0,38	1,22	0,37	1,19	0,49	1,41	0,19	1,21	0,50	1,11	0,54
1,33	0,49	1,36	0,40	1,25	0,36	1,23	0,51	1,46	0,21	1,25	0,47	1,14	0,52
1,37	0,49	1,40	0,42	1,28	0,37	1,28	0,52	1,52	0,28	1,30	0,50	1,19	0,44
1,40	0,49	1,44	0,45	1,32	0,39	1,31	0,51	1,55	0,48	1,34	0,52	1,22	0,42
1,44	0,51	1,47	0,49	1,35	0,38	1,36	0,50	1,60	1,33	1,37	0,50	1,26	0,34
1,47	0,52	1,50	0,50	1,39	0,40	1,40	0,47	1,64	4,17	1,41	0,49	1,32	0,34
1,50	0,53	1,54	0,49	1,43	0,41	1,44	0,53	1,68	4,66	1,45	0,48	1,35	0,35
1,53	0,53	1,58	0,46	1,46	0,42	1,47	0,92	1,71	5,31	1,48	0,53	1,38	0,39
1,57	0,53	1,61	0,46	1,51	0,42	1,51	2,32	1,74	6,14	1,52	0,57	1,45	0,42
1,62	0,57	1,65	0,48	1,55	0,45	1,55	4,56	1,77	7,32	1,56	0,61	1,49	0,42
1,65	0,58	1,69	0,46	1,59	0,48	1,58	4,68	1,58	4,68	1,60	0,70	1,54	0,43
1,70	0,61	1,73	0,44	1,64	0,49	1,62	5,18 5,83			1,63	0,70	1,57	0,46
1,73	0,60	1,76	0,45	1,67	0,48	1,65				1,66	0,75	1,60	0,47
1,77	0,63	1,80	0,41	1,70	0,49	1,68	6,69			1,69	0,85	1,64	0,49

ERGEBNISPROTOKOLL Nr. 12-03/ Blatt 5/10

(FORTSETZUNG)

Ŭ ME	P 16	MF	17	MF	20	MF	21	MF	22	MF	23	MF	24
	B-1		3-2		0-1)-2		2-1		2-2		Jan
Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW
cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm
1,80	0,75	1,84	0,41	1,74	0,51	1,71	7,97			1,72	1,02	1,68	0,50
1,83	0,77	1,88	0,44	1,79	0,51	1,79	0,51			1,77	1,14	1,71	0,55
1,87	0,85	1,91	0,44	1,83	0,51					1,80	1,08	1,75	0,60
1,91	0,85	1,95	0,45	1,87	0,50					1,83	1,03	1,80	0,63
1,94	0,78	1,99	0,47	1,90	0,48					1,86	0,92	1,83	0,73
1,97	0,73	2,02	0,46	1,94	0,49					1,90	0,84	1,86	0,76
2,01	0,69	2,06	0,50	1,99	0,50					1,95	0,91	1,90	0,74
2,04	0,68	2,09	0,50	2,02	0,50					1,99	0,86	1,93	0,79
2,09	0,67	2,12	0,50	2,05	0,50					2,04	0,75	1,96	0,86
2,13	0,54	2,16	0,52	2,09	0,49					2,08	0,65	1,99	0,90
2,17	0,50	2,19	0,54	2,14	0,49					2,11	0,55	2,02	0,93
2,20	0,65	2,24	0,66	2,17	0,50					2,15	0,55	2,05	0,96
2,23	0,73	2,27	0,72	2,20	0,53					2,19	0,55	2,08	0,96
2,27	0,77	2,30	0,68	2,23	0,52					2,22	0,60	2,12	0,95
2,30	0,75	2,33	0,70	2,26	0,54					2,26	0,66	2,16	1,02
2,33	0,77	2,36	0,72	2,30	0,54					2,29	0,60	2,19	1,13
2,37	0,79	2,39	0,76	2,33	0,55					2,32	0,59	2,22	1,20
2,40	0,77	2,44	0,79	2,36	0,60					2,35	0,59	2,26	1,22
2,44	0,79	2,47	0,79	2,39	0,62					2,39	0,58	2,29	1,26
2,47	0,77	2,50	0,76	2,42	0,64					2,42	0,60	2,32	1,30
2,52	0,61	2,54	0,71	2,46	0,62					2,47	0,62	2,35	1,34
2,56	0,55	2,57	0,68	2,49	0,63					2,51	0,62	2,38	1,34
2,59	0,65	2,60	0,72	2,54	0,64					2,54	0,76	2,41	1,38
2,63	0,63	2,64	0,74	2,58	0,62					2,58	0,77	2,45	1,37
2,66	0,63	2,68	0,74	2,61	0,63					2,62	0,80	2,48	1,36
2,69	0,64	2,72	0,73							2,66	0,85	2,51	1,36
2,73	0,72	2,75	0,73							2,69	0,92	2,54	1,41
2,77	1,13	2,79	0,72							2,72	0,97	2,57	1,50
2,80	1,23	2,82	0,73									2,61	1,55
2,83	1,29	2,85	0,68									2,64	1,56
2,88	1,38	2,88	0,68									2,67	1,61
2,91	1,36	2,92	0,66									2,70	1,76
<u> </u>		2,95	0,67									2,73	1,82
L		2,99	0,64									2,77	1,88
<u> </u>		3,02	0,64									2,80	1,94
L		3,05	0,57									2,83	2,00
<u> </u>		3,08	0,58										
<u> </u>	\vdash	3,12	0,58										
<u> </u>		3,17	0,60										
		3,20	0,56										

ERGEBNISPROTOKOLL Nr. 12-03/ Blatt 6/10

Werte für Bohrwiderstandsmessungen im Weißen Saal Schloss Dahlen / Messung: Geotron Etektronik 2011

MF	P 26	MF	27	MF	28	MP	29	MF	30	MF	31	MF	32
_	20		3-1		3-2		3-1		3-2	2	-1	2	-2
Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW
cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm
0,03	0,6	0,03	0,23	0,06	0,13	0,04	0,33	0,06	0,16	0,04	0,12	0,05	0,14
0,07	0,92	0,06	0,22	0,09	0,12	0,07	0,35	0,11	0,15	0,10	0,12	0,10	0,15
0,10	1,15	0,10	0,23	0,12	0,12	0,11	0,42	0,15	0,17	0,16	0,16	0,14	0,15
0,14	1,72	0,15	0,25	0,18	0,15	0,17	0,42	0,18	0,16	0,20	0,18	0,19	0,15
0,17	2,68	0,18	0,27	0,24	0,21	0,20	0,54	0,22	0,18	0,24	0,20	0,24	0,17
0,20	3,27	0,22	0,30	0,32	0,23	0,24	0,63	0,27	0,21	0,29	0,20	0,29	0,18
0,23	3,46	0,26	0,33	0,37	0,25	0,27	0,71	0,31	0,24	0,32	0,23	0,34	0,17
0,26	3,49	0,30	0,32	0,41	0,29	0,31	0,76	0,37	0,28	0,35	0,24	0,37	0,17
0,29	3,57	0,34	0,33	0,44	0,32	0,36	0,79	0,41	0,31	0,38	0,26	0,42	0,17
0,32	3,57	0,38	0,35	0,48	0,36	0,39	0,85	0,44	0,35	0,41	0,27	0,47	0,18
0,35	3,36	0,42	0,37	0,52	0,40	0,42	1,22	0,47	0,39	0,44	0,28	0,54	0,18
0,38	3,13	0,47	0,37	0,55	0,44	0,45	1,69	0,50	0,40	0,51	0,26	0,59	0,19
0,41	2,49	0,52	0,33	0,60	0,43	0,49	1,75	0,54	0,48	0,54	0,26	0,65	0,21
0,44	1,58	0,55	0,34	0,64	0,40	0,53	1,77	0,57	0,64	0,61	0,29	0,70	0,21
0,47	0,98	0,59	0,33	0,68	0,45	0,56	1,93	0,60	0,70	0,65	0,30	0,75	0,20
0,51	0,79	0,63	0,33	0,74	0,50	0,59	1,96	0,65	0,74	0,69	0,30	0,80	0,21
0,55	0,75	0,68	0,33	0,78	0,47	0,62	4,12	0,69	0,76	0,72	0,32	0,84	0,23
0,58	0,65	0,71	0,34	0,83	0,46	0,65	7,13	0,72	0,73	0,76	0,32	0,88	0,28
0,61	0,65	0,75	0,31	0,86	0,47	0,68	8,81	0,75	0,71	0,80	0,33	0,92	0,28
0,64	0,59	0,79	0,31	0,89	0,45	0,71	8,46	0,79	0,70	0,84	0,36	0,96	0,30
0,68	0,60	0,82	0,29	0,93	0,45	0,75	8,00	0,82	0,72	0,88	0,38	0,99	0,33
0,72	0,61	0,87	0,31	0,98	0,44	0,78	7,97	0,86	0,66	0,92	0,40	1,03	0,35
0,75	0,60	0,91	0,31	1,01	0,45	0,81	7,87	0,89	0,54	0,95	0,39	1,07	0,36
0,79	0,62	0,95	0,29	1,05	0,39	0,84	7,64	0,92	0,47	1,00	0,39	1,12	0,39
0,82	0,59	0,99	0,30	1,08	0,33	0,87	7,52	0,95	0,46	1,05	0,41	1,16	0,38
0,87	0,62	1,03	0,33	1,12	0,34	0,90	5,29	0,99	0,45	1,09	0,39	1,19	0,36
0,90	0,70	1,08	0,37	1,15	0,35	0,95	2,25	1,03	0,45	1,13	0,38	1,22	0,33
0,93	0,67	1,13	0,43	1,21	0,34	0,99	0,48	1,07	0,47	1,17	0,39	1,26	0,34
0,97	0,70	1,17	0,46	1,25	0,33	1,02	0,44	1,12	0,48	1,21	0,39	1,31	0,32
1,00	0,71	1,20	0,47	1,28	0,32	1,06	0,38	1,15	0,48	1,25	0,41	1,34	0,28
1,03	0,78	1,23	0,47	1,34	0,32	1,11	0,38	1,18	0,49	1,31	0,42	1,38	0,24
1,06	0,79	1,26	0,53	1,37	0,32	1,15	0,40	1,22	0,53	1,34	0,45	1,41	0,22
1,10	0,79	1,30	0,56	1,43	0,33	1,19	0,44	1,25	0,58	1,37	0,48	1,46	0,22
1,13	0,78	1,34	0,56	1,46	0,34	1,24	0,43	1,29	0,60	1,41	0,51	1,54	0,23
1,17	0,82	1,38	0,56	1,51	0,34	1,27	0,45	1,33	0,57	1,44	0,55	1,59	0,25
1,21	0,77	1,41	0,55	1,54	0,34	1,32	0,46	1,36	0,60	1,47	0,56	1,63	0,29
1,24	0,86	1,45	0,54	1,58	0,34	1,37	0,49	1,39	0,56	1,52	0,57	1,66	0,30
1,28	0,87	1,49	0,54	1,63	0,33	1,42	0,50	1,42	0,62	1,55	0,56	1,70	0,31
1,31	0,86	1,53	0,57	1,67	0,39	1,45	0,49	1,46	0,87	1,59	0,55	1,73	0,34
1,34	0,81	1,57	0,60	1,70	0,42	1,49	0,49	1,50	1,13	1,64	0,53	1,77	0,35
1,37	0,86	1,61	0,57	1,74	0,44	1,52	0,51	1,55	1,60	1,69	0,49	1,80	0,42
1,41	0,86	1,65	0,60	1,79	0,52	1,56	0,48	1,58	2,04	1,72	0,49	1,84	0,44
1,44	0,91	1,68	0,60	1,82	0,56	1,59	0,49	1,62	2,11	1,75	0,45	1,89	0,45
1,48	0,96	1,71	0,60	1,85	0,58	1,62	0,47	1,65	2,20	1,79	0,46	1,92	0,45
1,51	0,97	1,76 1,79	0,66 0,67	1,89	0,61	1,65 1,70	0,50 0,52	1,68 1,72	2,16 2,17	1,83 1,87	0,47 0,45	1,95 1,99	0,43
1,54	0,94	1,/9	0,07	1,92	0,61	1,70	0,52	1,72	2,17	1,0/	0,45	1,99	0,41

ERGEBNISPROTOKOLL Nr. 12-03/ Blatt 7/10 (FORTSETZUNG)

MF	P 26	MF	27	MF	28	MF	29	MF	30	MF	31	MF	32
2	20	13	3-1		3-2		3-1		3-2		-1		2-2
Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg	BW
cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm
1,57	0,94	1,84	0,77	1,96	0,64	1,73	0,50	1,75	2,08	1,91	0,46	2,03	0,43
1,60	0,94	1,88	0,82	2,00	0,61	1,76	0,52	1,78	1,79	1,94	0,45	2,08	0,43
1,64	0,90	1,92	0,80	2,05	0,62	1,79	0,48	1,83	1,50	1,98	0,49	2,11	0,42
1,67	0,80	1,95	0,82	2,08	0,63	1,82	0,48	1,86	0,98	2,01	0,53	2,15	0,37
1,70	0,72	1,99	0,84	2,11	0,63	1,86	2,16	1,89	0,47	2,05	0,50	2,19	0,38
1,73	0,62	2,02	0,89	2,15	0,69	1,89	2,20	1,92	0,34	2,09	0,51	2,23	0,40
1,76	0,47	2,05	0,92	2,18	0,75	1,92	2,43	1,95	0,25	2,13	0,51	2,26	0,41
1,84	0,39	2,09	0,89	2,22	0,77	1,96	2,69	1,98	0,23	2,16	0,52	2,29	0,42
1,92	0,32	2,12	0,83	2,25	0,76	1,99	3,02	2,02	0,23	2,20	0,55	2,33	0,43
1,98	0,29	2,15	0,79	2,29	0,83	2,02	3,56	2,08	0,23	2,23	0,54	2,37	0,41
2,06	0,25	2,18	0,76	2,32	0,82			2,13	0,23	2,26	0,58	2,41	0,42
2,11	0,25	2,22	0,80	2,36	0,86			2,16	0,22	2,30	0,61	2,45	0,45
2,15	0,28	2,25	0,81	2,40	0,84			2,20	0,20	2,33	0,62	2,49	2,40
2,18	0,31	2,28	0,81	2,43	0,78			2,23	0,21	2,36	0,62	2,52	2,42
2,21	0,36			2,48	0,71			2,27	0,22	2,39	0,61	2,56	2,66
2,24	0,40			2,51	0,70			2,31	0,27	2,43	0,62	2,60	2,98
2,28	0,42			2,55	0,76			2,34	0,29	2,46	0,63	2,63	3,40
2,31	0,49			2,60	0,80			2,38	0,29	2,50	0,59	2,66	4,01
2,34	0,47			2,63	0,81			2,43	0,30	2,54	0,60		
2,39	0,52			2,66	0,83			2,47	0,32	2,58	0,62		
2,43	0,57			2,69	0,80			2,50	0,33	2,61	0,56		
2,46	0,64			2,73	0,84			2,55	0,35	2,64	0,53		
2,50	0,64			2,77	0,91			2,59	0,35	2,68	0,54		
2,53	0,72			2,80	0,95			2,64	0,33	2,71	0,55		
2,56	0,75							2,69	0,28	2,76	0,61		
2,59	0,79							2,72	0,27	2,79	0,64		
2,63	0,77							2,76	0,29	2,82	0,66		
2,66	0,82							2,81	0,29	2,85	0,67		
2,70	0,82		\vdash					2,86	0,28	2,88	0,64		
2,64	1,56		\vdash							2,91	0,67		
			\vdash							2,94	0,64		
										2,98	0,67		
										3,01	0,68		
										3,05	0,60		
										3,08	0,55		

ERGEBNISPROTOKOLL Nr. 12-03/ Blatt 8/10

Werte für Bohrwiderstandsmessungen im Weißen Saal Schloss Dahlen / Messung: Geotron Etektronik 2011

MF	33	MP	34	MF	35	MP	36	MF	37	MF	38	MF	39
07.	Jan	21	-1	21	1-2	21	1-3	19	9-1	19	9-2	19	9-3
Weg	BW												
cm	s/mm												
0,08	0,14	0,05	0,53	0.04	0,38	0,04	0,38	0,03	0,19	0,06	0,3	0,05	0,15
0,13	0,16	0,08	0,55	0,08	0,36	0,09	0,43	0,06	0,18	0,10	0,30	0,10	0,19
0,18	0,20	0,11	0,58	0,11	0,41	0,14	0,46	0,10	0,18	0,14	0,32	0,16	0,32
0,23	0,19	0,14	0,60	0,16	0,51	0,19	0,48	0,14	0,20	0,18	0,36	0,20	0,48
0,28	0,22	0,17	0,68	0,23	0,62	0,22	0,57	0,19	0,42	0,22	0,43	0,23	0,65
0,32	0,24	0,21	0,74	0,28	0,63	0,26	0,61	0,23	0,77	0,26	0,52	0,28	0,80
0,35	0,25	0,24	0,83	0,31	0,60	0,29	0,71	0,28	1,02	0,29	0,55	0,31	0,99
0,40	0,26	0,27	0,84	0,34	0,60	0,32	0,79	0,31	1,44	0,33	0,56	0,34	1,04
0,44	0,26	0,30	0,86	0,37	0,65	0,35	0,88	0,34	1,74	0,36	0,55	0,37	1,07
0,49	0,28	0,33	0,86	0,40	0,70	0,38	0,91	0,38	1,91	0,39	0,59	0,41	1,07
0,54	0,29	0,36	0,88	0,44	0,74	0,42	0,96	0,41	1,98	0,43	1,23	0,44	1,10
0,57	0,26	0,40	0,88	0,47	0,79	0,45	1,04	0,44	2,04	0,46	1,73	0,47	1,06
0,61	0,34	0,44	0,90	0,51	0,72	0,48	1,09	0,47	2,10	0,49	2,20	0,50	0,96
0,66	0,38	0,48	0,93	0,54	0,64	0,51	1,12	0,50	1,94	0,53	2,54	0,57	0,86
0,69	0,49	0,51	0,93	0,58	0,66	0,54	1,19	0,53	1,62	0,56	2,86	0,60	0,80
0,73	0,52	0,54	0,90	0,61	0,74	0,58	1,26	0,56	1,42	0,59	3,47	0,64	0,71
0,76	0,53	0,57	0,90	0,65	0,75	0,61	1,39	0,59	1,08	0,62	3,65	0,67	0,75
0,80	0,53	0,60	0,90	0,68	0,79	0,65	1,40	0,63	0,86	0,65	3,75	0,71	0,82
0,83	0,54	0,64	0,94	0,71	0,82	0,68	1,52	0,67	0,75	0,68	3,77	0,74	0,93
0,87	0,57	0,67	0,95	0,75	0,86	0,71	1,65	0,71	0,76	0,71	3,17	0,77	0,96
0,93	0,58	0,70	0,96	0,78	0,83	0,74	1,95	0,75	0,79	0,74	2,70	0,80	0,99
0,96	0,53	0,74	0,95	0,82	0,83	0,77	2,05	0,78	0,76	0,77	2,26	0,84	1,06
1,00	0,48	0,77	0,95	0,85	0,81	0,80	2,20	0,81	0,77	0,80	1,92	0,87	1,15
1,05	0,39	0,81	0,97	0,88	0,77	0,84	2,22	0,85	0,79	0,84	1,61	0,90	1,18
1,08	0,40	0,84	0,97	0,92	0,74	0,87	2,31	0,88	0,79	0,87	1,05	0,93	1,26
1,12	0,40	0,87	0,99	0,95	0,72	0,90	2,35	0,92	0,77	0,90	0,92	0,96	1,30
1,15	0,39	0,90	1,02	0,99	0,71	0,93	2,41	0,95	0,77	0,93	0,89	0,99	1,42
1,19	0,40	0,94	1,03	1,03	0,75	0,96	2,45	0,98	0,79	0,96	0,87	1,02	1,45
1,23	0,36	0,97	1,00	1,07	0,71	0,99	2,40	1,01	0,76	0,99	0,91	1,05	1,56
1,27	0,35	1,00	0,96	1,10	0,71	1,02	2,28	1,04	0,77	1,03	0,93	1,08	1,72
1,32	0,36	1,03	0,89	1,14	0,74	1,05	2,33	1,07	0,79	1,06	0,93	1,11	1,86
1,36	0,37	1,06	0,89	1,17	0,82	1,08	2,58	1,10	0,84	1,09	0,95	1,14	2,50
1,41	0,37	1,10	0,92	1,21	0,85	1,11	2,87	1,13	0,84	1,12	0,97	1,17	2,53
1,44	0,35	1,13	1,06	1,24	0,87	1,14	3,02	1,17	0,89	1,15	0,98	1,20	2,66
1,48	0,35	1,17	1,11	1,28	0,92	1,17	2,98	1,20	0,90	1,19	0,99	1,23	3,08
1,52	0,41	1,21	1,17	1,31	0,94	1,20	2,96	1,23	0,88	1,22	1,02	1,26	3,22
1,56	0,45	1,24	1,21	1,34	0,91	1,23	2,96	1,26	0,91	1,25	1,06	1,29	3,15
1,60	0,53	1,27	1,34	1,38	0,99	1,26	3,05	1,29	0,96	1,28	1,04	1,33	2,93
1,64	0,56	1,31	1,55	1,41	1,12	1,30	2,92	1,32	0,97	1,32	1,05	1,36	2,67
1,67	0,59	1,34	1,69	1,44	1,16	1,33	2,97	1,36	1,02	1,35	1,07	1,39	2,39
1,71	0,61	1,37	1,81	1,48	1,14	1,36	2,60	1,39	0,98	1,38	1,07	1,42	1,58
1,74	0,59	1,40	1,83	1,51	1,19	1,39	2,35	1,43	1,01	1,41	1,09	1,50	1,47
1,78	0,59	1,43	1,79	1,54	1,27	1,42	2,24	1,46	1,01	1,44	1,08	1,62	1,22
1,81	0,60	1,46	1,89	1,58	1,25	1,45	2,67	1,49	1,07	1,48	1,11	1,68	0,84
1,85	0,55	1,50	2,00	1,61	1,31	1,49	2,85	1,52	1,15	1,51	1,08	1,71	0,58
1,89	0,48	1,53	2,13	1,64	1,30	1,52	2,89	1,55	1,19	1,54	1,10	1,74	0,53

ERGEBNISPROTOKOLL Nr. 12-03/ Blatt 9/10 (FORTSETZUNG)

MF	33	MF	34	MF	35	MF	9 36	MF	37	MF	38	MF	39
07.	Jan	21	l-1	2	1-2	21	I-3	19	9-1	19	9-2	19	9-3
Weg	BW	Weg	BW	Weg	BW	Weg	BW	Weg		Weg	BW	Weg	BW
cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm	cm	s/mm
1,92	0.42	1.56	2.26	1.67	1.35	1,55	2.85	1.58	1,19	1.57	1,15	1.79	0.68
1,96	0,42	1,59	2,55	1,70	1,32	1,58	3,09	1,62	1,15	1,61	1,15	1,82	0,76
2,00	0,44	1,62	2,81	1,73	1,33	1,61	4,63	1,65	1,03	1,64	1,20	1,86	0,93
2,05	0,46	1,66	3,12	1,76	1,47	1,64	5,72	1,68	0,95	1,67	1,22	1,89	1,89
2,10	0,63	1,69	3,46	1,79	1,59	1,68	5,68	1,71	0,84	1,70	1,19	1,92	2,08
2,14	0,66	1,72	4,17	1,82	1,79	1,71	5,39	1,75	0,84	1,73	1,15	1,95	2,30
2,17	0,70	1,75	4,84	1,85	1,97	1,74	4,88	1,78	0,82	1,77	1,03	1,99	2,38
2,21	0,71	1,78	4,66	1,89	2,24	1,77	5,00	1,85	0,70	1,80	0,93	2,02	2,69
2,24	0,73	1,81	4,89	1,92	2,58	1,80	4,79	1,96	0,60	1,83	0,80		
2,27	0,78	1,84	5,16	1,95	3,09	1,83	4,74	1,99	0,73	1,87	0,97		
2,30	0,76	1,87	5,18	1,98	3,47	1,87	4,41	2,02	1,94	1,92	1,11		
2,34	0,74	1,90	5,44	2,01	3,73	1,90	2,65	2,06	2,34	2,03	1,08		
2,37	0,81			2,04	3,88	1,93	1,47	2,09	2,62	2,12	1,06		
2,41	0,78			2,07	3,85	1,96	1,37	2,13	2,98	2,15	1,05		
2,45	0,82			2,10	3,67	2,00	1,46	2,16	3,31	2,18	1,13		
2,48	0,80			2,13	3,42	2,04	1,49	2,19	3,73				
2,51	0,84			2,17	3,01	2,07	1,20						
2,55	0,86			2,20	3,11	2,11	1,28						
2,58	0,82			2,23	2,60	2,15	1,39						
2,61	0,85			2,26	2,27	2,18	1,38						
2,64	0,84			2,33	2,07	2,21	1,45						
2,67	0,78			2,36	1,83	2,24	1,56						
2,71	0,69			2,39	1,79	2,28	1,67						
2,75	0,66					2,31	1,74						
2,78	0,63												
2,81	0,61												
2,85	0,58												
2,88	0,60												
2,92	0,56												
2,95	0,51												
2,99	0,48												
3,02	0,44												
3,06	0,40												
3,11	0,42												
<u> </u>													
<u> </u>													
<u> </u>													

ERGEBNISPROTOKOLL Nr. 12-03/ Blatt 10/10 Werte für Bohrwiderstandsmessungen im Weißen Saal Schloss Dahlen / Messung: Geotron Etektronik 2011

MF	9 40	MP 41					
25	5-1	25	5-2				
Weg	BW	Weg	BW				
cm	s/mm	cm	s/mm				
0,05	0,5	0,03	0,98				
0,08	0,53	0,06	1,05				
0,11	0,64	0,10	1,14				
0,15	0,77	0,14	1,18				
0,19	0,90	0,17	1,31				
0,23	1,02	0,20	1,43				
0,26	1,07	0,24	1,56				
0,29	1,36	0,27	1,55				
0,32	1,50	0,31	1,52				
0,35	1,62	0,35	1,46				
0,38	1,65	0,38	1,42				
0,41	1,61	0,42	1,38				
0,44	1,54	0,45	1,46				
0,47	1,60	0,48	1,88				
0,51	1,65	0,51	3,99				
0,54	1,66	0,54	5,37				
0,57	1,46	0,57	6,42				
0,60	1,44	0,60	6,83				
0,63	1,51	0,63	7,02				
0,66	2,60	0,66	7,43				
0,69	4,30	0,69	8,71				
0,72	6,29	0,72	8,66				
0,75	14,34	0,75	8,66				
0,78	15,93	0,79	7,63				
0,81	18,00	0,82	13,73				
0,84	20,70	0,85	14,14				
0,87	24,50	0,88	15,50				
		0,91	17,52				
		0,94	20,06				

ERGEBNISPROTOKOLL Nr. 13-01

Aufgabe: Prüfung der Oberflächenfestigkeit an behandeltem

und unbehandeltem Kalkstuck/ Kalkputz

Methode: Peeling Test (Klebeband-Test), gravimetrisch

Bereich: Schloss Leuben, Tympanon des östlichen Risalitgiebels, Musterfläche

	unbel	ierung					
	U1	U2	U3	B1	B2	B3	
M _a 01	1,412	1,420	1,462	1,453	1,423	1,475	[g]
M _e 01	1,594	1,492	1,971	1,545	1,573	1,615	[g]
ΔM 01	0,182	0,072	0,509	0,092	0,150	0,140	[g]
M _a 02	1,428	1,415	1,468	1,472	1,430	1,436	[g]
M _e 02	1,679	1,490	1,888	1,556	1,532	1,499	[g]
ΔM 02	0,251	0,075	0,420	0,084	0,102	0,063	[g]
M _a 03	1,408	1,491	1,416	1,405	1,411	1,416	[g]
M _e 03	1,595	1,570	1,673	1,486	1,533	1,526	[g]
ΔM 03	0,187	0,079	0,257	0,081	0,122	0,110	[g]
M _a 04	1,373	1,457	1,436	1,417	1,381	1,430	[g]
M _e 04	1,524	3,206	1,699	1,473	1,464	1,489	[g]
ΔM 04	0,151		0,263	0,056	0,083	0,059	[g]
M _a 05	1,406	1,424	1,430	1,345	1,410	1,384	[g]
M _e 05	1,588	1,540	1,753	1,371	1,460	1,396	[g]
ΔM 05	0,182	0,116	0,323	0,026	0,050	0,012	[g]
M _a 06	1,410	1,422	1,438	1,417	1,394	1,418	[g]
M _e 06	1,612	1,765	1,602	1,487	1,408	1,467	[g]
ΔM 06	0,202	0,343	0,164	0,070	0,014	0,049	[g]
M _a 07	1,452	1,444	1,427	1,386	1,407	1,419	[g]
M _e 07	1,570	1,491	1,500	1,387	1,438	1,421	[g]
ΔM 07	0,118	0,047	0,073	0,001	0,031	0,002	[g]
M _a 08	1,427	1,455	1,392	1,428	1,430	1,392	[g]
M _e 08	1,521	1,525	1,476	1,458	1,450	1,409	[g]
ΔM 08	0,094	0,070	0,084	0,030	0,020	0,017	[g]
M _a 09	1,457	1,418	1,417	1,470	1,383	1,432	[g]
M _e 09	1,542	1,461	1,513	1,472	1,393	1,440	[g]
ΔM 09	0,085	0,043	0,096	0,002	0,010	0,008	[g]
M _a 10	1,422	1,434	1,452	1,469	1,437	1,379	[g]
M _e 10	1,457	1,525	1,524	1,502	1,439	1,382	[g]
ΔM 10	0,035	0,091	0,072	0,033	0,002	0,003	[g]

M_a = Ausgangsmasse Klebestreifen

M_e = Endmasse Klebestreifen nach Peeling -Test

 $\Delta M = M_a - M_e$ (Masse abgerissenen Materials)

ERGEBNISPROTOKOLL Nr. 13-02

Bereich: Schloss Leuben, Raum 012, Ostwand, Musterfläche

		unbehar	ndelte Put	zflächen	Ø	Vort	ests	Muste	erkonservi	erung	П
		U1	U2	U3	U1-U3	Test 14	Test 15	B1	B2	B3	Ш
M_a	01	1,442	1,402	1,456		1,358	1,432	1,383	1,429	1,406	[g]
$M_{\rm e}$	01	1,783	1,773	1,847		1,677	1,539	1,467	1,594	1,532	[g]
ΔΜ	01	0,341	0,371	0,391	0,368	0,319	0,107	0,084	0,165	0,126	[g]
M_a	02	1,431	1,440	1,466		1,417	1,428	1,397	1,404	1,397	[g]
M_e	02	1,628	1,790	1,696		1,791	1,489	1,470	1,513	1,500	[g]
ΔΜ	02	0,197	0,350	0,230	0,259	0,374	0,061	0,073	0,109	0,103	[g]
M_a	03	1,308	1,423	1,447		1,404	1,418	1,408	1,422	1,437	[g]
M_e	03	1,623	1,590	1,607		1,757	1,478	1,523	1,478	1,532	[g]
ΔΜ	03	0,315	0,167	0,160	0,214	0,353	0,060	0,115	0,056	0,095	[g]
M_a	04	1,444	1,447	1,419		1,438	1,431	1,433	1,436	1,402	[g]
M_e	04	1,531	1,573	1,574		1,725	1,444	1,486	1,472	1,440	[g]
ΔΜ	04	0,087	0,126	0,155	0,123	0,287	0,013	0,053	0,036	0,038	[g]
M_a	05	1,430	1,392	1,469		1,386	1,386	1,395	1,442	1,421	[g]
M_e	05	1,524	1,544	1,522		1,538	1,399	1,426	1,518	1,446	[g]
ΔΜ	05	0,094	0,152	0,053	0,100	0,152	0,013	0,031	0,076	0,025	[g]
M_a	06	1,397	1,376	1,412		1,388	1,415	1,391	1,430	1,433	[g]
M_e	06	1,453	1,477	1,450		1,509	1,417	1,473	1,449	1,478	[g]
ΔΜ	06	0,056	0,101	0,038	0,065	0,121	0,002	0,082	0,019	0,045	[g]
M_a	07	1,448	1,374	1,422		1,427	1,430	1,409	1,422	1,428	[g]
M_e	07	1,488	1,460	1,441		1,531	1,434	1,436	1,457	1,499	[g]
ΔΜ	07	0,040	0,086	0,019	0,048	0,104	0,004	0,027	0,035	0,071	[g]
M_a	80	1,462	1,394	1,441		1,411	1,444	1,424	1,419	1,398	[g]
M_e	08	1,527	1,433	1,474		1,457	1,448	1,880	1,432	1,406	[g]
ΔΜ	80	0,065	0,039	0,033	0,046	0,046	0,004	0,456	0,013	0,008	[g]
M_a	09	1,430	1,411	1,413		1,437	1,454	1,445	1,430	1,405	[g]
M_e	09	1,440	1,434	1,437		1,494	1,455	1,506	1,453	1,430	[g]
ΔΜ	09	0,010	0,023	0,024	0,019	0,057	0,001	0,061	0,023	0,025	[g]
M_a	10	1,387	1,408	1,431		1,394	1,441	1,406	1,408	1,404	[g]
M_e	10	1,393	1,446	1,466		1,436	1,444	1,524	1,425	1,408	[g]
ΔΜ	10	0,006	0,038	0,035	0,026	0,042	0,003	0,118	0,017	0,004	[g]

M_a = Ausgangsmasse Klebestreifen

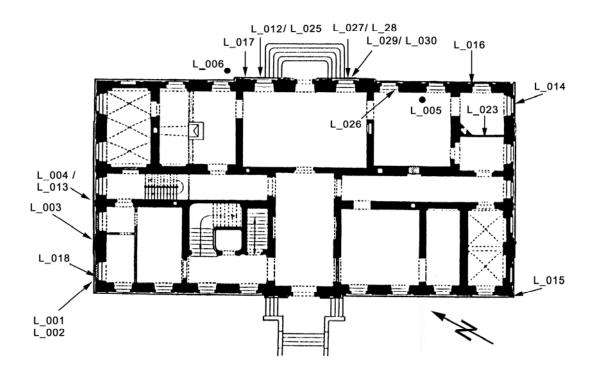
 M_e = Endmasse Klebestreifen nach Peeling -Test

 $\Delta M = M_a - M_e$ (Masse abgerissenen Materials)

ERGEBNISPROTOKOLL Nr. 13-03

Bereich: Schloss Dahlen, Weißer Saal, Westwand, Musterfläche

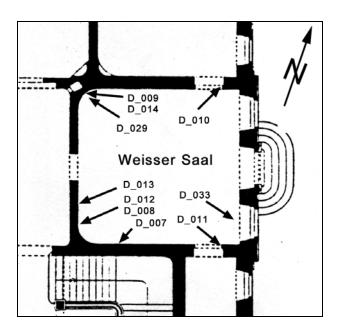
		unbel	nandelter	Stuck	Muste	erkonservi	erung	
		U1	U2	U3	B1	B2	B3	
M_a	01	1,290	1,297	1,304	1,261	1,249	1,220	[g]
M _e	01	1,431	1,630	1,463	1,286 1,282 1,240		1,240	[g]
ΔΜ	01	0,141	0,333	0,159	0,025	0,033	0,020	[g]
M_a	02	1,283	1,272	1,336	1,223	1,200	1,177	[g]
M_e	02	1,385	1,527	1,499	1,235	1,215	1,218	[g]
ΔΜ	02	0,102	0,255	0,163	0,012	0,015	0,041	[g]
Ma	03	1,287	1,295	1,315	1,259	1,227	1,192	[g]
M _e	03	1,359	1,495	1,389	1,287	1,247	1,307	[g]
ΔΜ	03	0,072	0,200	0,074	0,028	0,020	0,115	[g]
M_a	04	1,257	1,312	1,345	1,283	1,203	1,205	[g]
M_{e}	04	1,376	1,401	1,429	1,331	1,218	1,252	[g]
ΔΜ	04	0,119	0,089	0,084	0,048	0,015	0,047	[g]
M_a	05	1,297	1,296	1,326	1,283	1,229	1,200	[g]
M _e	05	1,457	1,418	1,408	1,388	1,388 1,248		[g]
ΔΜ	05	0,160	0,122	0,082	0,105	0,019	0,008	[g]
M_a	06	1,255	1,278	1,360	1,267	1,211	1,210	[g]
M _e	06	1,366	1,518	1,413	1,375	1,224	1,242	[g]
ΔΜ	06	0,111	0,240	0,053	0,108	0,013	0,032	[g]
M_a	07	1,255	1,280	1,331	1,271	1,230	1,207	[g]
M_e	07	1,349	1,487	1,373	1,279	1,241	1,394	[g]
ΔΜ	07	0,094	0,207	0,042	0,008	0,011	0,187	[g]
M_a	80	1,272	1,330	1,348	1,255	1,203	1,221	[g]
M_e	08	1,330	1,477	1,433	1,281	1,216	1,289	[g]
ΔΜ	08	0,058	0,147	0,085	0,026	0,013	0,068	[g]
M_a	09	1,290	1,304	1,323	1,285	1,208	1,212	[g]
M_{e}	09	1,325	1,523	1,349	1,307	1,212	1,226	[g]
ΔΜ	09	0,035	0,219	0,026	0,022	0,004	0,014	[g]
M_a	10	1,280	1,312	1,343	1,272	1,216	1,241	[g]
M _e	10	1,312	1,454	1,440	1,298	1,226	1,246	[g]
ΔΜ	10	0,032	0,142	0,097	0,026	0,010	0,005	[g]


M_a = Ausgangsmasse Klebestreifen

M_e = Endmasse Klebestreifen nach Peeling -Test

 $\Delta M = M_a - M_e$ (Masse abgerissenen Materials)

PROBEENTNAHMESTELLEN

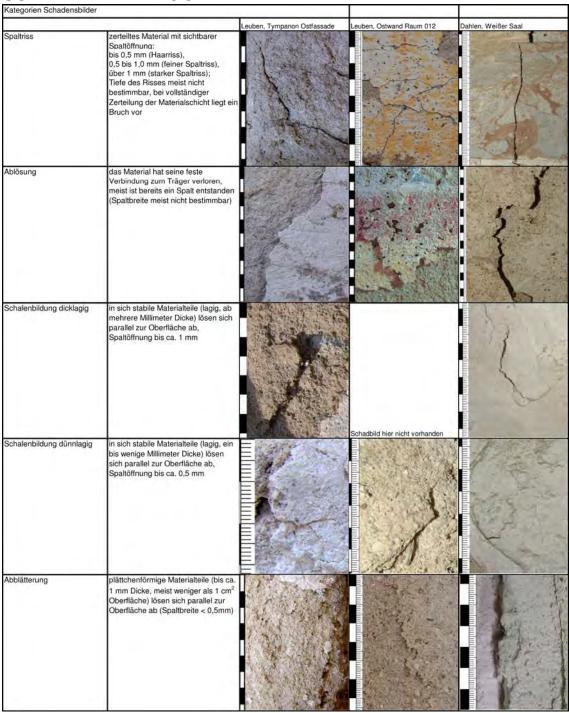

Schloss Leuben

Grundriss Erdgeschoss unter Verwendung der Fig. 159 aus GURLITT (1905), S.160

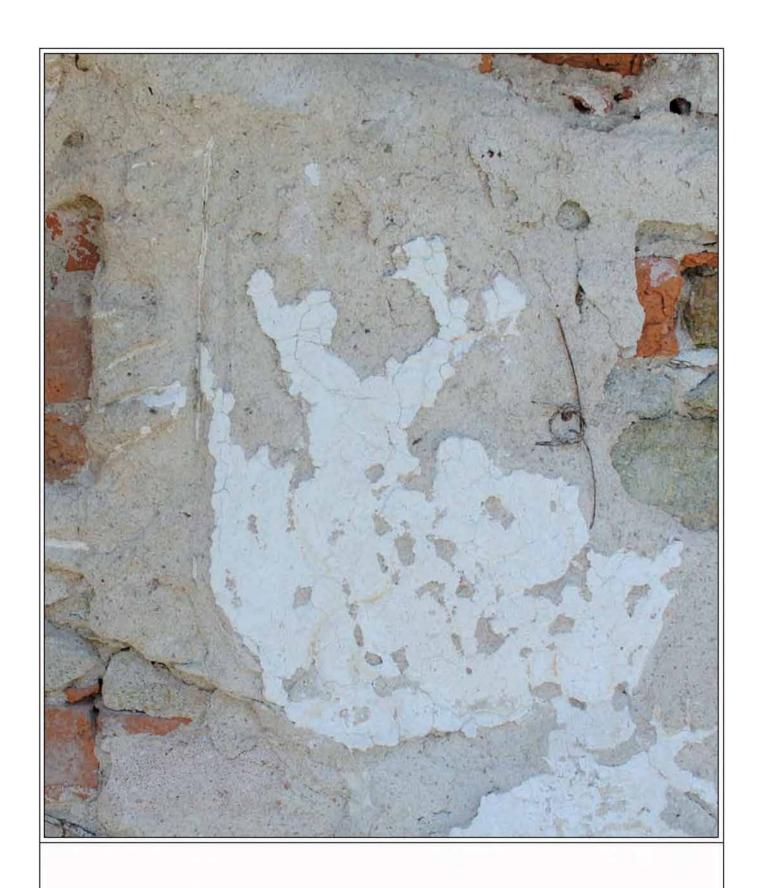
Nr.	Material	Art	Lokalisierung	Entnahme
L_005	Innenputz + Fassung	F	Raum 012, OW	17.10.2008
L_006	Fassadenstuck	F	OF	17.10.2008
L_012	Unterstuck	F	OF / Gesims unter dem Tympanon	17.10.2008
L_013	Salzausblühung	Е	NF, Sockelzone, westl. Bereich	29.01.2009
L_014	Salzausblühung	Е	SF, Sockelzone, östl. Bereich	29.01.2009
L_015	Salzausblühung	Е	SF, Sockelzone, westl. Bereich	29.01.2009
L_016	Salzausblühung	Е	OF, Brüstungszone EG, südl. Bereich	29.01.2009
L_017	Salzausblühung	Е	OF, EG, Risalit nördl. Bereich, Postament	29.01.2009
L_018	Salzausblühung	Е	NF, Sockelzone, westl. Bereich	29.01.2009
L_019	Innenputz + Fassung	F	Raum 012, OW, mittl. Wandbereich	29.01.2009
L_025	Innenputz + Fassung	Е	Raum 013, WW, Sockel	29.01.2009
L_026	Innenputz + Fassung	F	Raum 012, OW, Laibung Fenster Süd	24.04.2009
L_027	Feinstuck	F	OF, Gesims unter Tympanon	18.08.2009
L_028	Ergänzungs-Stuck	F	OF, Gesims unter Tympanon	18.08.2009
L_029	Salzausblühung	Е	Tympanon, südl. Bereich	18.08.2009
L_030	Salzausblühung	Е	Tympanon, südl. Bereich	18.08.2009
			OF Ostfassade	
	F Fund		NF Nordfassade	
	E Entnahme		WF Westfassade	
			SF Südfassade	
			OW Ostwand	
			WW Westwand	

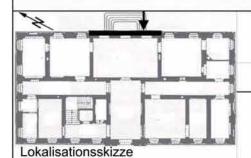
Schloss Dahlen

Grundriss Erdgeschoss, Bereich Weißer Saal (unter Verwendung Fig. 100 aus GURLITT (1905), S.92)


Nr.	Material	Art	Lokalisierung	Entnahme						
D_002	Weißer Stuck mehrlagig	F	Südwand	07.10.2008						
D_003	schwarzer Stuckmarmor	F	Nordwestwand	07.10.2008						
D_005	Stuck mehrlagig	F	Südwand	07.10.2008						
D_006	Unterputz 1	Е	OW Wandbereich 1/2	22.01.2009						
D_007	Unterputz 2	Е	SW Wandbereich 4	22.01.2009						
D_008	Unterputz 3	Е	WW südlicher Bereich	22.01.2009						
D_009	Salzausblühung	Е	NWW Kaminrahmung	22.01.2009						
D_010	Salzausblühung	Е	NW Wandbereich 5	22.01.2009						
D_011	Salzausblühung	Е	SW Wandbereich 1	22.01.2009						
D_012	Salzausblühung	Е	WW südlicher Bereich	22.01.2009						
D_013	Salzausblühung	Е	WW südlicher Bereich	22.01.2009						
D_014	Salzausblühung	Е	NWW am Ofenrohrstutzen	22.01.2009						
D_015	Salzausblühung	Е	NW Wandbereich 1	22.01.2009						
D_021	Weißer Stuck mherlagig	F	OW (Fensternische)	19.02.2009						
D_023	Unterputz	F	Ostwand	19.02.2009						
D_025	Stuckmarmor grau/braun	F	Südwand	19.02.2009						
D_029	Weißer Stuck	F	Nordwestwand	19.02.2009						
D_033	Unterputz	F	Ostwand	19.02.2009						
			OW Ostwand							
	NW Nordwand									
	NWW Nordwestwand									
	WW Westwand									
			SW Südwand							

SCHADENSSYSTEMATIK


	DEITE	00101										TYPE OF SCHADTY	DAMAGE P (Qualität)												
MA	LOSS OF MATERIAL MATERIALVERLUST nach Flächencharakter DETERIORATION (DETACHMENT, DECOMPOSITION) ZERSTÖRUNG (TEILUNG, TRENNUNG, AUFLÖSUNG)						CHANGE IN FORM FORMÄNDERUNG				DEPOSIT AUFLAGERUNG							VISUAL VISUELL	CHANGE/ C .E ÄNDERU	HANGE IN (NG/ Farbver	COLOUR änderung				
	BREAKOFF ABBRUCH					HAIR GRACK HAARRISS	SINGLE HAIR CRACK EINZELNER HAARRISS	STAR HAIR CRACK STERN-ÖRMIGER HAARRISS	GRAQUELE NETZFÖRMGE HAARRISSE		ASKEW VERSCHUB				BIOLOGICAL COLONIZATION BIOLOGISCHE BESIEDLUNG	ACTIV ORGANISM Adive ORGAN SIVEN	ALGEN	LICHEN PLECHTEN	MOSS MOOSE	WOULD	PLANTS WURZELPFLANZEN	CHANGE IN COLOUR FARBVERÄNDERUNG	BLEACHING VERBLEICHEN	DISCOLOURATION VERFÄRBUNG	STAINING/SPOTTING PLECKENBILDUNG
SHARP-EDGED SURFACE SCHARPKANTIGE OBERPLÄCHE	DISRUPTION AUSBRUCH				CRACKS + FRACTURES RISSE + BRUECHE	SPLIT GRACK SPALTRISS	SINGLE SPLIT CRACK BINZELNER SPALTRISS	STAR SPLIT CRACK STERNFÖRMGER SPALTRISS	RETICULATE SPLIT CRACKS NETZFÖRMGE SPALTRISSE		DEFORMATION VERFORMUNG	DEFORMATION WITHOUT MATERIAL DAMAGE VERFORMING OFNE MATERIAL SCHÄDEN			BIOLOGISCHE BIOLOGISCHE	RESIDUE OF ORGANSMS Rückstände von Organismen						GLOSSY ASPECT GLANZERSCHEINUNG			
SCHARFKAN	SCRATCH RITZ				ORACKS RISSE	STRATIFICATION SPLITTING Lageraufspaltung					DEFC	DEFORMATION WITH MATERIAL DAWAGE VERFORMUNG MIT MATERIALSCHÄDEN	BULGING OF SURFACE AUFWÖLBUNG DER OBERFLÄCHE	BLISTERINNG BLASENBILDUNG	CONTAMINANT DEPOSIT GERUNG VON FREMDMATERIAL	SOILING / DIRT VERSCHAUTZUNG	DEPOSITS OF MORTAR MÖRTELAUFLAGERUNG	EXCREMENTS EXCREMENTE	PAINT DEPOSIT FARBAUFLAGERUNG			LOSS OF LUSTRE GLANZVERLUST			
	SPUNTERING ZERSPLITTERUNG					FRACTURE BRUCH									CONTAMINAN AUFLAGERUNG VON	DIRT GRUST SCHMJTZRRUSTE		SINTERING / MINERAL SEDIMENTATION VERSINTERUNG		SALT CRUST Salzkruste					
	ALVEOLISATION ALVEOLISIERUNG					GRANULAR DECAY KÖRNIGER ZERFALL	SANDING ABSANDUNG	POMDERING CHALIANG ABPLDERN	SUGARING ABZUCKERUNG						EFFLORESCENCE AUSBLÜHUNGEN	SALT PLAINS Salzrasen	SALT DISTORTION Salzpustein	SALT WHSKERS Salzwhisker	SALT TARNSH Sazschleier	SALTC					
	EROSION EROSION	DIFFERENTIAL EROSION UNREGELMÄRIGE EROSION	ROUNDING	ROUGHENING AUFRAUUNG		LUMPY DECAY STÜCKIGIGER ZERFALL	CRUMBLING BRÖCKELZERFALL								EFFLC AUSBI										
VFACE LÄCHE	CAVERNS KAVERNEN				DECAY ZERFALL	DECAY IN LAYERSI SCHICHTIGER ZERFALL		IN THICK LAYERS in dicken Schichten	EXFOLIATION EINSCHICHTIG	MULTI EXFOLIATION (MULTI LAYERED) MEHRSCH GHTIG				'		•						•			
ROUND-SHAPED SURFACE GERUNDETE OBERFLÄCHE	PERFORATION PERFORATION				DEC		DELAMINATION Schichtenparalleler Zeifall	IN THIN LAYERS in dünnen Schichten	CH PPING ENSCHICHTIG	MULTI CHPPING (MLTI LAYERED) MEHRSCH CHTIG															
	MICROKARST				-		SCALING herparalleler Zerfall	IN THICK LAYERS in dicken Schichten	CONTOUR SCALING (SINGLE LAYER) EINSCHICHTIG	MULTI SCALING (MULTI LAYERED) MEHRSCH CHTIG															
	ABRASION ABRIEB						SC# oberflächenp	IN THIN LAYERS in dünnen Schichten	PEELING (SINGLE LAYER) EINSCH GHTIG	FLAKING (MLTI LAYERED) MEHRSCHOHTIG															
	PITTING LOCHFRASS										•														


Ergebnis des EU-Projektes medistone (LINKE/DÄHNE (2009)

SCHADBILDKATALOG

Aufschieferung	lagige Materialsuflösung in vielfach übereinander liegenden oberflächenparallelen Zusammenhängen von jeweils < 1mm bis wenige Millimeter Dicke, Spaltbreite überwiegend < 1mm			
Stückiger Zerfall	Zerfall in bröckchenartige, in sich stabile Materialteile (Dimension wenige Millimeter bis wenige Zentimeter) Kleinstteilig (Teilchen im Millimeterbereich, Spalt < 0.5 mm Kleinteilig (Teilchen ca. 5-10 mm Außenmaße, Spalt meist 0,5 bis 1.0 mm) Großteilig (Teilchen > 10mm Außenmaße, Spalt meist > 1 mm)			
Absandung, Abpudern	oberlächige Materialauflösung in Einzelaggregate, je nach deren Dimension ist der Übergang vom Abpudern zum Absanden fließend		Schadbild hier nicht vorhanden	Schadbild hier nicht vorhanden
Verformung				
Blasen	geschlossene, lokal oberflächig aufgewölbte und in diesem Bereich abgelöste Materiallage oder Schicht	Schadbild hier nicht vorhanden		Schadbild hier nicht vorhanden
Randliche Aufwölbung	dünnschichtige Materialteile mit gelösten, leicht nach oben gebogenen Rändern		Schadbild hier nicht vorhanden	Schadbild hier nicht vorhanden

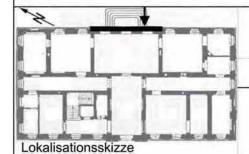
Schloss Leuben, Ostfassade, Tympanon südlicher Bereich / Fläche Musterkonservierung

PLAN 1-0

Maßstab ca. 1:2,5

Kartierungsgrundlage: Digitalaufnahme 05/2011. Kein Messbild

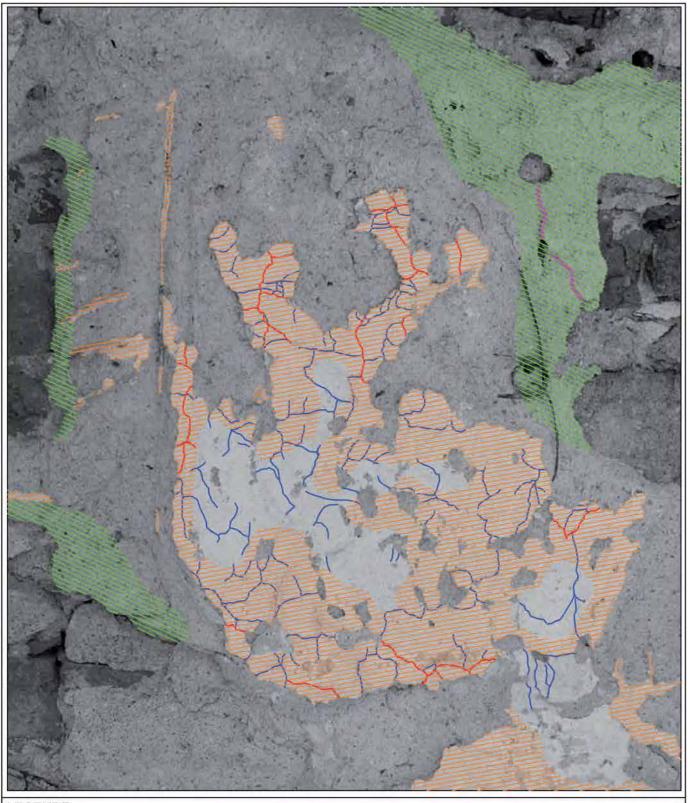
Erfassung vor Ort: Dähne 2011 Digitalumsetzung: Dähne 2012


LEGENDE

Komplettverlust Fassung

Komplettverlust Feinstuck

Komplettverlust Unterstuck


Schloss Leuben, Ostfassade, Tympanon südlicher Bereich / Fläche Musterkonservierung

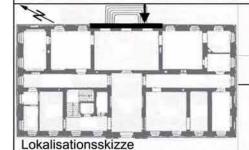
PLAN 1-1: Verluste

Maßstab ca. 1:2,5

Kartierungsgrundlage: Digitalaufnahme 05/2011. Kein Messbild

Erfassung vor Ort: Dähne 2011 Digitalumsetzung: Dähne 2012

LEGENDE

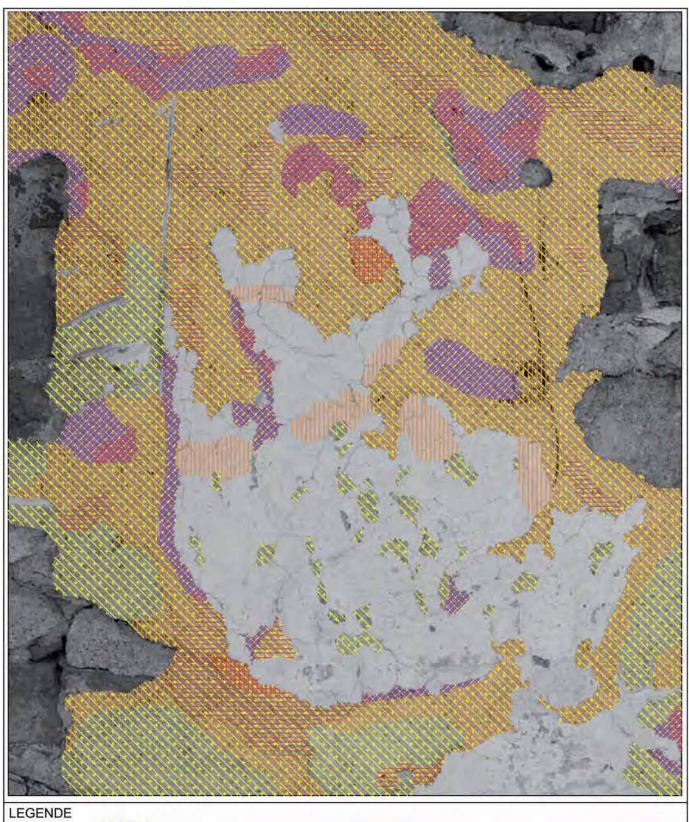

Risse bis 0,5 mm Spalt

Risse 0,5 bis 1,0 mm Spalt

Risse > 1mm Spalt

Ablösung Feinstuck

Ablösung Unterstuck


Schloss Leuben, Ostfassade, Tympanon südlicher Bereich / Fläche Musterkonservierung

PLAN 1-2: Risse und kohäsive Ablösungen

Maßstab ca. 1:2,5

Kartierungsgrundlage: Digitalaufnahme 05/2011. Kein Messbild

Erfassung vor Ort: Dähne 2011 Digitalumsetzung: Dähne 2012

Absandung

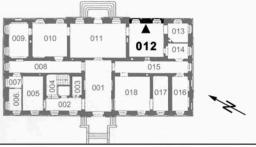
Lokalisationsskizze

Schalen dünnlagig

Schalen dicklagig

Aufschieferung

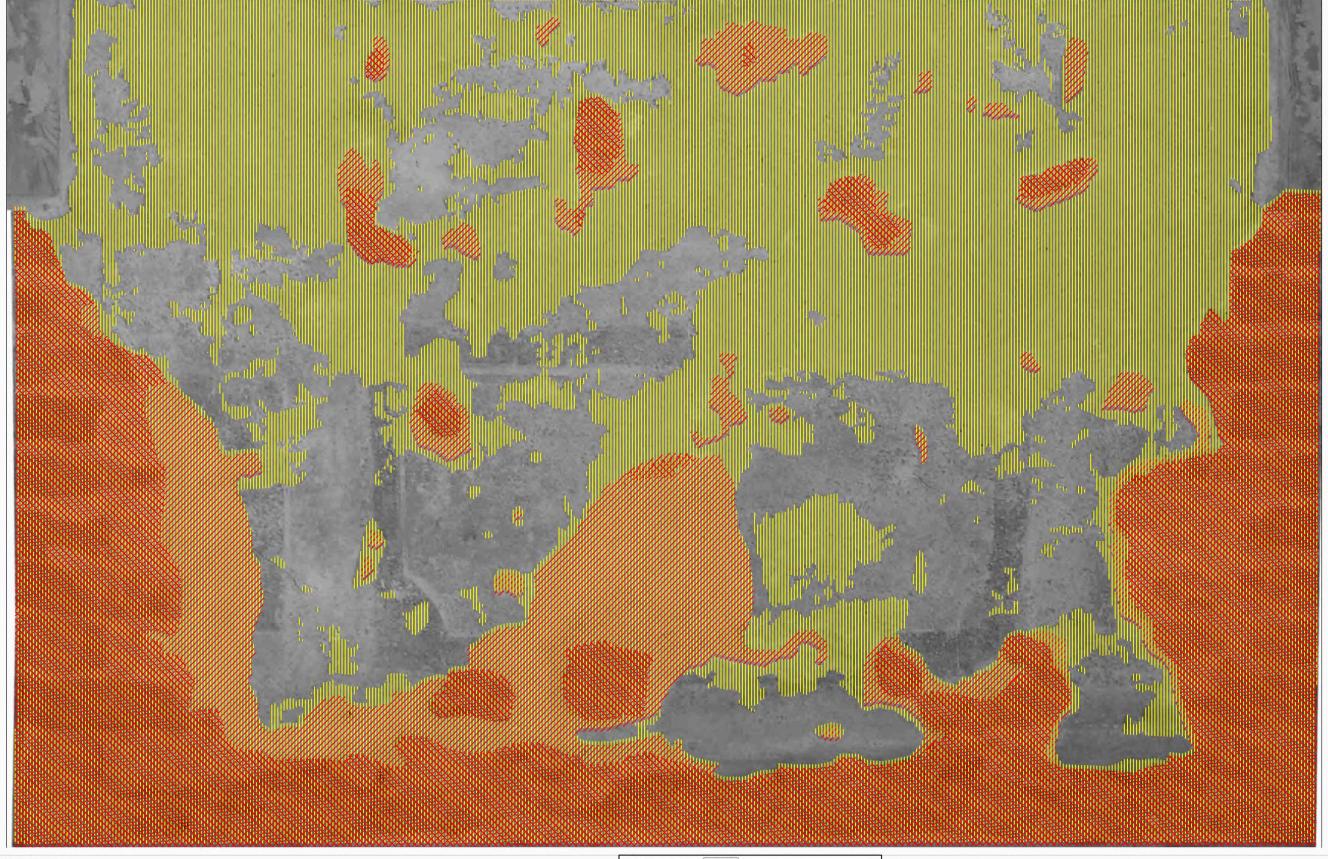
Schloss Leuben, Ostfassade, Tympanon südlicher Bereich / Fläche Musterkonservierung


PLAN 1-3: Materialzerstörung

Maßstab ca. 1:2,5

Kartierungsgrundlage: Digitalaufnahme 05/2011. Kein Messbild

Erfassung vor Ort: Dähne 2011 Digitalumsetzung: Dähne 2012

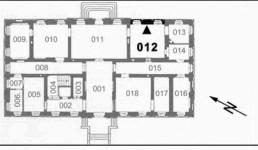


Lokalisationsskizze

Schloss Leuben, Raum 012 Ostwand, mittlerer Wandbereich, untere Wandzone

PLAN 2-0

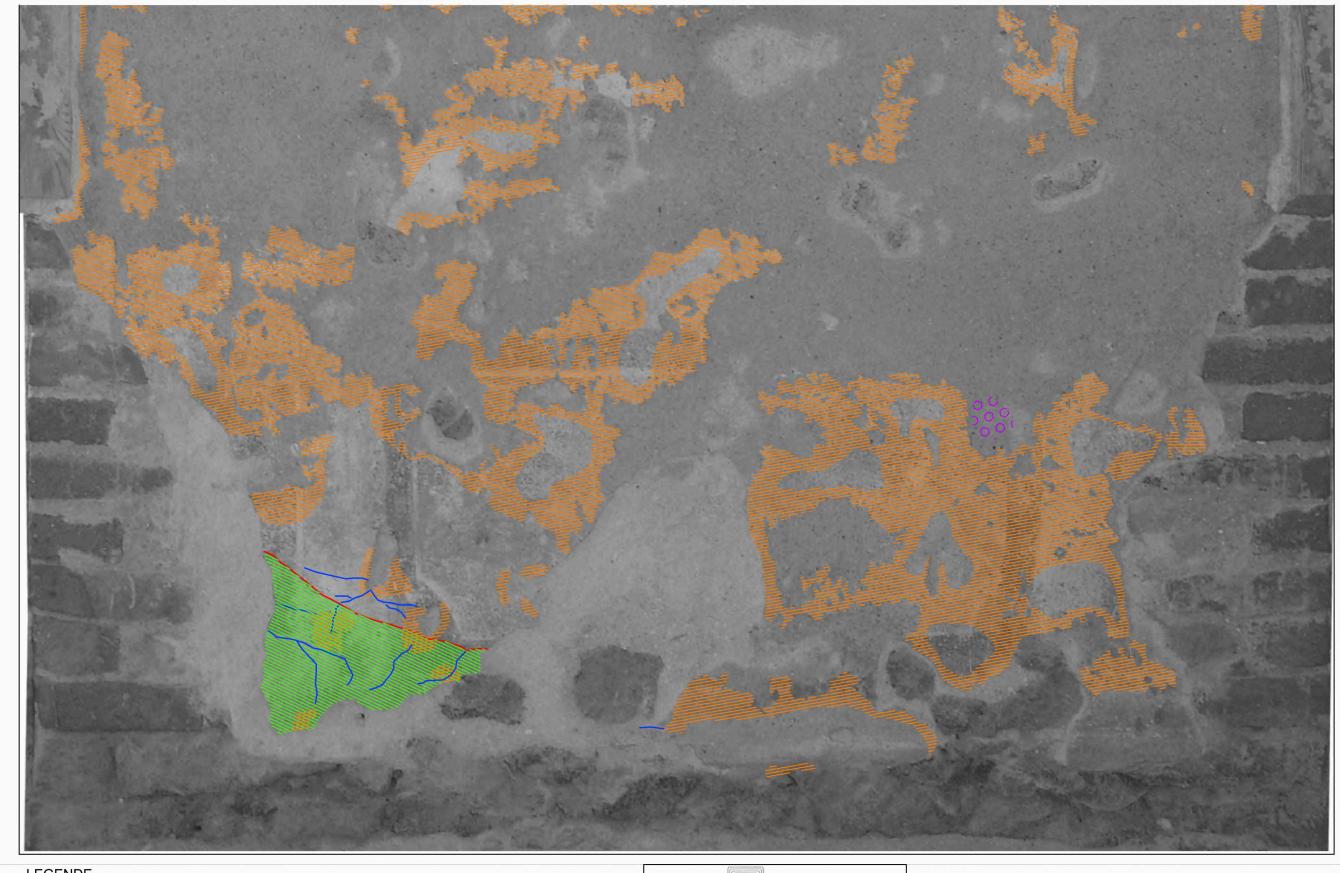
Maßstab ca. 1:5
Kartierunggrundlage: entzerrte Digitalaufnahme 07/2009. Kein Messbild
Erfassung vor Ort: Dähne 2009
Digitalumsetzung: Dähne 2012
Anhang A S.301


LEGENDE

Komplettverlust Fassung

Komplettverlust Deckputz

Komplettverlust Unterputz


Lokalisationsskizze

Schloss Leuben, Raum 012 Ostwand, mittlerer Wandbereich, untere Wandzone

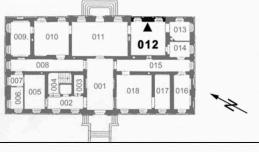
PLAN 2-1: Verluste

Maßstab ca. 1:5

Kartierunggrundlage: entzerrte Digitalaufnahme 07/2009. Kein Messbild Erfassung vor Ort: Dähne 2009
Digitalumsetzung: Dähne 2012
Anhang A S.303

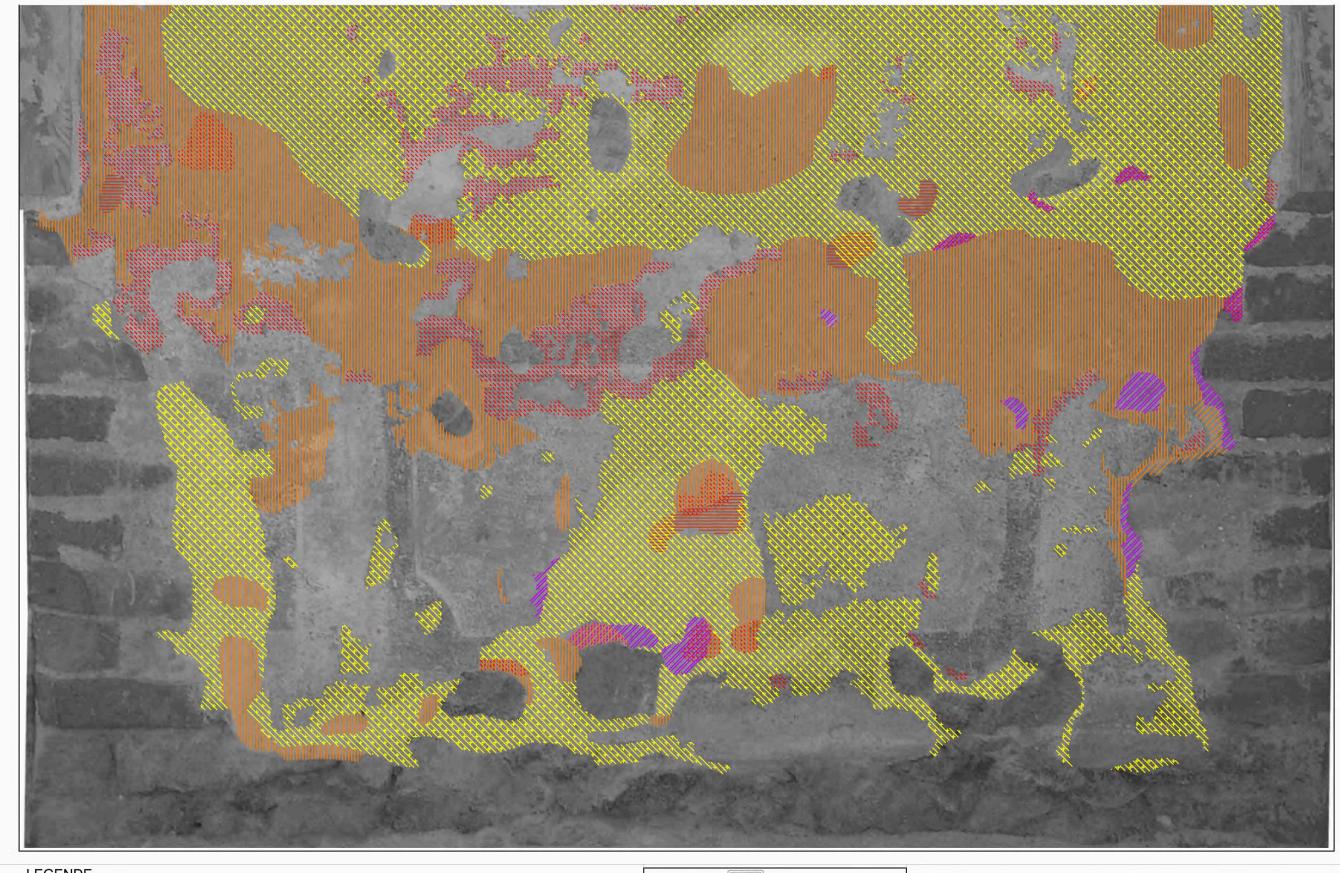
LEGENDE

Risse bis 0,5 mm Spalt


Risse 0,5 bis 1,0 mm Spalt

Ablösung Deckputz

Putzblase


Lokalisationsskizze

Schloss Leuben, Raum 012 Ostwand, mittlerer Wandbereich, untere Wandzone

PLAN 2-2: Risse und kohäsive Ablösungen

Maßstab ca. 1:5

Kartierunggrundlage: entzerrte Digitalaufnahme 07/2009. Kein Messbild Erfassung vor Ort: Dähne 2009
Digitalumsetzung: Dähne 2012
Anhang A S.305

LEGENDE

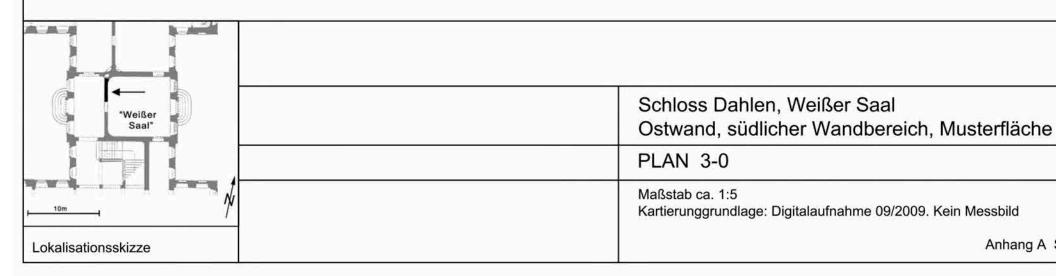
Absandung

Aufschieferung

Aufwölbung

Abblätterung

Lokalisationsskizze


Schloss Leuben, Raum 012 Ostwand, mittlerer Wandbereich, untere Wandzone


PLAN 2-3: Materialzerstörung

Maßstab ca. 1:5

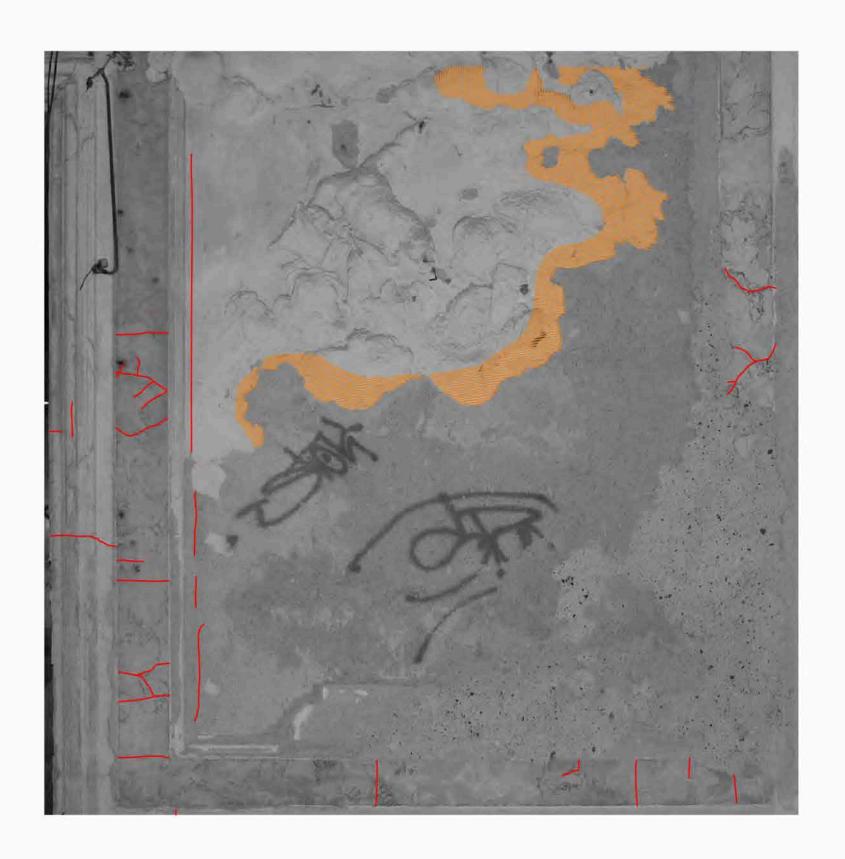
Kartierunggrundlage: entzerrte Digitalaufnahme 07/2009. Kein Messbild Erfassung vor Ort: Dähne 2009
Digitalumsetzung: Dähne 2012
Anhang A S.307

LEGENDE

Komplettverlust weißer Gipsstuck

Komplettverlust Stuckmarmor

Komplettverlust Unterputz 2


"Weißer Saal"		
	Ċ	

Schloss Dahlen, Weißer Saal	
Ostwand, südlicher Wandbereich, Musterfläche	

PLAN 3-1: Verluste

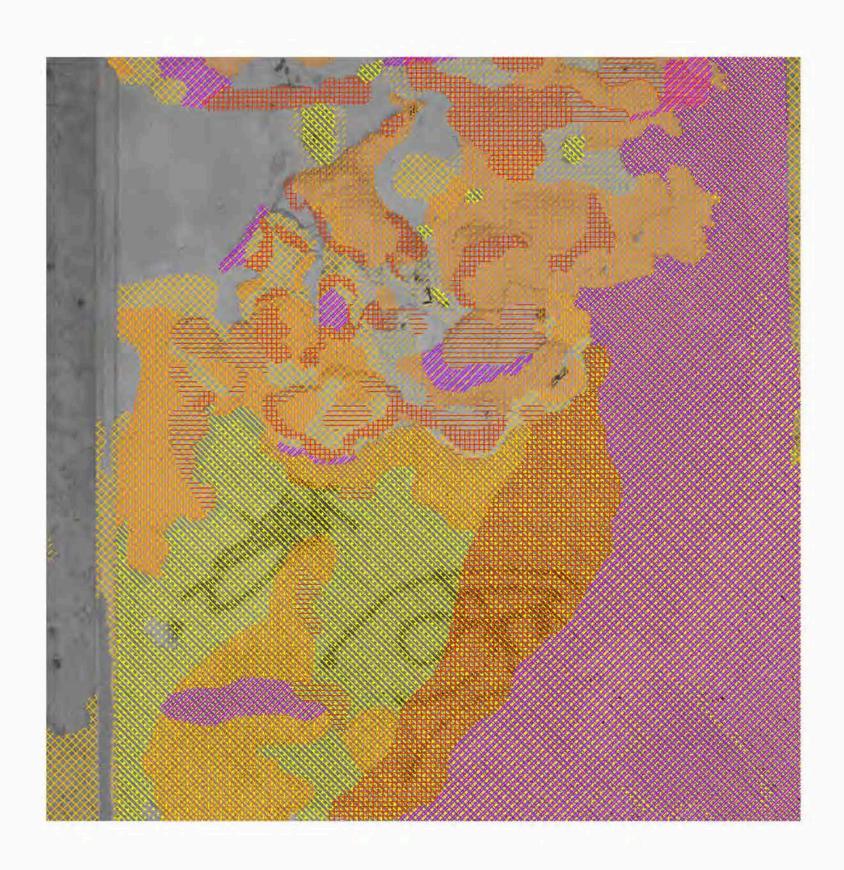
Maßstab ca. 1:5

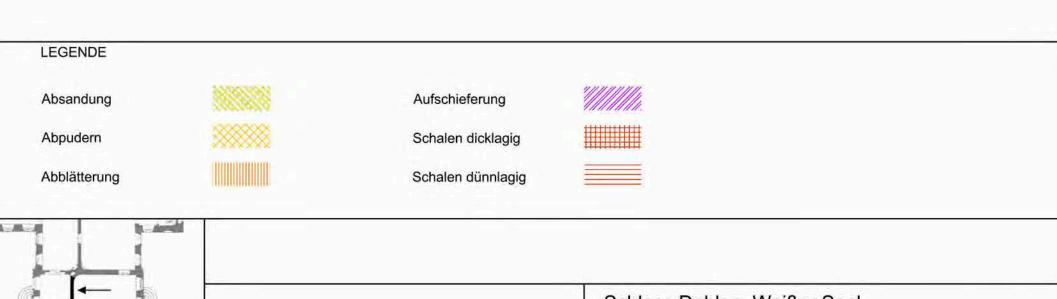
Kartierunggrundlage: Digitalaufnahme 09/2009. Kein Messbild Erfassung vor Ort: Dähne 2009
Digitalumsetzung: Dähne 2012
Anhan

LEGENDE

Risse 0,5 bis 1,0 mm Spalt

Ablösung Stuck


	"Weißer Saal"	
10m		*


Schloss Dahlen, Weißer Saal	
Ostwand, südlicher Wandbereich,	Musterfläche

PLAN 3-2: Risse und kohäsive Ablösungen

Maßstab ca. 1:5

Kartierunggrundlage: Digitalaufnahme 09/2009. Kein Messbild Erfassung vor Ort: Dähne 2009 Digitalumsetzung: Dähne 2012 Anhan

Schloss Dahlen, Weißer Saal "Weißer Saal" Ostwand, südlicher Wandbereich, Musterfläche PLAN 3-3: Materialzerstörung Maßstab ca. 1:5 Lokalisationsskizze

Kartierunggrundlage: Digitalaufnahme 09/2009. Kein Messbild Erfassung vor Ort: Dähne 2009
Digitalumsetzung: Dähne 2012
Anhar Anhang A S.315

Anhang B

Technisches Merkblatt

CaLoSiL®

CaLoSiL® in unterschiedlichen Konzentrationen

Eigenschaften

Alle Produkte der CaLoSiL® Reihe enthalten Calciumhydroxid-Nanopartikel im Korngrößenbereich von 50 bis 250 nm. Diese sind in unterschiedlichen Alkoholen dispergiert. Aus der Bezeichnung können Zusammensetzung und Konzentration abgelesen werden. Der dem Namen nachfolgende Buchstabe charakterisiert den Alkohol: E für Ethanol, IP für iso-Propanol und NP für n-Propanol. Die folgende Zahl gibt die Calciumhydroxidkonzentration in g/L an. CaLoSiL® E-50 enthält somit 50 g/L Calciumhydroxid in Ethanol.

Nach einem verdunsten des Alkohols liegen in den behandelten Materialien kristalline Nanopartikel von Calciumhydroxid vor. Diese wandeln sich, analog zu konventionellen Kalkmörteln, durch Reaktion mit atmosphärischem Kohlendioxid in Calciumcarbonat um. Dieser Prozess erfordert eine relativ hohe Luftfeuchtigkeit. Die Lösungsmittel verdunsten in der Reihenfolge Ethanol - iso-Propanol - n-Propanol.

Alle CaLoSiL® Produkte sind zur Festigung von Stein, Putz und Mörtel sowie zur Behandlung von Malschichten geeignet. Die Unterschiede liegen in der Verdunstungszeit des Alkohols, in der erreichbaren Festigung sowie im Eindringvermögen und der Carbonatisierungszeit. Generell werden diese Faktoren aber auch in starkem Maße von den Eigenschaften der zu behandelnden Materialien beeinflusst.

CaLoSiL® führt zu hydrophilen Massen bzw. Oberflächen. Komponenten, die zu einer Schädigung des Steines/Mörtels führen könnten, sind in keinem CaLoSiL® Produkt enthalten.

Verfügbare Produkte

Folgende Standardprodukte sind erhältlich:

CaLoSiL® E-5, E-25 und E-50 CaLoSiL® IP-5, IP-15 und IP-25 CaLoSiL® NP-5, NP15 und NP-25

Andere Konzentrationen sowie spezielle Lösungsmittel sind auf Anfrage möglich. Alle Produkte werden in 500 mL, 1 Liter, 2,5 Liter, 5 Liter und 10 Liter Gebinden geliefert. Spezialprodukte sind CaLoSiL®-grau, CaLoSiL®-pastös und CaLoSiL®-mikro.

Eigenschaften des gebildeten Calciumhydroxids/ Calciumcarbonates

Die abgeschiedenen Calciumhydroxidpartikel sind extrem fein, typische Partikelgrößen liegen zwischen 50 und 250 nm. Diese sind bei konventionellen Dünnschliffunter-

IBZ-Salzchemie GmbH & Co.KG

suchungen oftmals nicht detektierbar. Analoges gilt für die gebildeten Calciumcarbonate, welche häufig als sehr feine Kristalle vorliegen. Diese können sowohl Schichten bilden als auch Porenräume ausfüllen. Zur Detektion wird der Einsatz der Rasterelektronenmikroskopie empfohlen.

Eindringvermögen

Die Eindringtiefe wird von einer Vielzahl von Faktoren wie z. B.:

- Struktur und Oberflächenbeschaffenheit des zu behandelnden Materials,
- Porosität und Saugvermögen,
- Feuchtigkeitsgehalt des Steines,
- Temperatur und Luftfeuchtigkeit

bestimmt und kann nur schwer vorhergesagt werden.

Insbesondere bei dichten Steinen führen hoch konzentrierte CaLoSiL® Produkte nur zu geringen Eindringtiefen. Auf Mörteln oder Putzen vorhandene dichte Sinterschichten verhindern ebenfalls ein eindringen.

Das Eindringvermögen in feuchte Schichten ist generell schlechter als in trockene Bereiche. Ebenso ist bei der Verarbeitung ein möglichst trockenes Klima vorteilhaft. Soll eine Festigung von Bereichen, die durch einen hohen Feuchtigkeitsgehalt gekennzeichnet sind, realisiert werden, so ist zunächst eine Vorbehandlung mit Ethanol zu empfehlen. Der zu verfestigende Bereich wird mit Ethanol getränkt, nach einem verdunsten dieses ist eine Behandlung mit CaloSil® möglich.

Weißschleier

Eine Weißschleierbildung ist stark vom Saugvermögen des Steines/Putzes sowie der Calciumhydroxid-Konzentration des gewählten CaLoSiL®-Typs abhängig. Insbesondere bei relativ dichten Materialien, bei einem feuchten Untergrund sowie bei zu schnellem Verdunsten des Alkohols und bei Einsatz von zu hoch konzentrierten CaLo-SiL® Produkten kann eine Weißschleierbildung nicht ausgeschlossen werden. Eine Vorgehensweise, dass zunächst mit verdünnten Lösungen begonnen wird und dann sukzessive die Konzentration erhöht wird, hat sich als vorteilhaft erweisen. Generell ist zu empfehlen, überstehende Lösung abzuwischen oder mit einem Schwamm aufzusaugen. Teilweise kann eine Weißschleierbildung auch durch den Zusatz von Aceton oder Pentan verringert oder vollständig unterbunden werden.

Reaktionszeiten

Die eingesetzten Alkohole verdunsten in der Regel innerhalb von wenigen Stunden. Der eigentliche Karbonatisierungsprozess benötigt jedoch, je nach Tiefe und eingesetzter Calciumhydroxidmenge, mehrere Tage bis Wochen. Oberflächennahe Bereiche können bereits innerhalb von 2 bis 4 Tagen vollständig karbonatisiert sein. Eine rote Verfärbung beim aufsprühen von Phenolpthaleinlösung gibt einen sicheren Eindruck über das Vorhandensein von unumgesetztem Calciumhydroxid. Nach dem Verdunsten des Lösungsmittels unterstützt eine hohe Luftfeuchtigkeit den Karbonatisierungsprozess.

IBZ-Salzchemie GmbH & Co.KG

CaLoSiL® und Kieselsäureester

In vielen Fällen, in denen durch die alleinige Anwendung von Kieselsäureester (KSE) nicht die gewünschte Wirkung erzielt wird, kann durch die Kombination CaLoSiL®/KSE eine erfolgreiche Festigung erreicht werden. Wir empfehlen zunächst eine Behandlung mit CaLoSiL® – 25 g/L auf die, nach verdunsten des Lösungsmittels, ein Auftragen eines konventionellen Kieselsäureesters folgt. Gegenüber dem alleinigen Einsatz von Kieselsäureestern sind deutlich verkürzte Reaktionszeiten zu beobachten. Das durch die Behandlung mit CaLoSiL® gebildete Calciumhydroxid wirkt als Katalysator und beschleunigt die Bildung von gelförmiger Kieselsäure. Gleichzeitig wird eine haftvermittelnde Wirkung erzielt. Es können alle bekannten Steinfestiger auf Kieselsäurebasis eingesetzt werden.

Lagerung

Es wird deshalb eine kurzfristige Verarbeitung des Materials empfohlen, Lagerzeiten über 3 Monate sollten generell vermieden werden. Sollten bei längerer Lagerzeit Nano-Partikel sedimentieren, so können diese durch schütteln des geschlossenen Behälters problemlos dispergiert werden. Die Anwendbarkeit wird dadurch nicht beeinflusst.

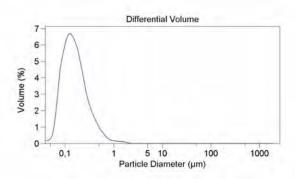
Mischbarkeit mit anderen Materialien

Alle CaLoSiL® Produkte sind untereinander mischbar. Eine Vermischung mit Ethanol, n- sowie iso-Propanal ist problemlos möglich. Demgegenüber führt der Zusatz von Wasser zur Bildung eines Calciumhydroxidgels, welches naturgemäß nur ein geringes Eindringvermögen aufweist. Bei Zusatz hoher Wassermengen kommt es zur Ausflockung.

Sicherheit

Alle Produkte der CaLoSiL® Reihe sind leicht entzündlich und stark alkalisch. Wir empfehlen den Auftrag durch Tränken, z.B. unter Einsatz einer Injektionsspritze, oder in Form eines Anstriches. Bei einem Sprühen ist unbedingt zu beachten, dass Aerosole hoher Entflammbarkeit gebildet werden, deren Einatmung gleichzeitig gesundheitliche Schäden hervorrufen kann. Generell sind Handschuhe und Schutzbrille in Verbindung mit zweckmäßiger Kleidung zu tragen. Mögliche Zündquellen sind unbedingt vorher zu entfernen. Es ist auf eine ausreichende Belüftung zu achten. Bitte beachten Sie die in unseren Sicherheitsdatenblättern aufgeführten Richtlinien.

Es wird generell das Anlegen einer Testfläche empfohlen. Bitte wenden Sie sich bei allen Fragen z.B. zur Handhabung, Anwendbarkeit, Reaktivität oder bezüglich der Auswahl des geeigneten Produktes direkt an uns. Wir bieten auch die Möglichkeit der Durchführung von Vorversuchen in unserem Labor an.


Vorstehende Informationen wurden nach dem neusten Stand der Entwicklung und Anwendungstechnik zusammengestellt. Da Anwendung und Verarbeitung außerhalb unseres Einflusses liegen, kann aus dem Inhalt dieser Anwendungshinweise keine Haftung des Herstellers abgeleitet werden.

IBZ-Salzchemie GmbH & Co.KG

Technisches Merkblatt

CaLoSiL®-pastös

Eigenschaften

CaLoSiL®-pastös enthält Calciumhydroxid-Nanopartikel in Konzentrationen bis zu 250 g/L. Die Partikelgrößen liegen im Bereich zwischen 50 nm und 1 µm, also über denen von CaLoSiL®-E, -IP oder -NP, jedoch immer noch deutlich unter denen von traditionellen Kalksuspensionen. Die Partikel sind stabil in Ethanol dispergiert wobei, wie in allen anderen Produkten - so auch in CaLoSiL®-pastös, keine zusätzlichen Additive, die zu einer Schädigung der behandelten Bereiche führen könnten, enthalten sind.

Einsatzgebiete/ Anwendungen

CaLoSiL®-pastös ist ein Mittel zur Festigung von Stein, Mörtel und Putz. Es kann in der Lieferform zum Verfüllen von Rissen, Poren und Hohlräumen angewandt werden. Gleichzeitig ist ein Hinterfüllen von Schuppen und Schalen möglich. CaLoSiL®-pastös weist klebende Eigenschaften auf. In Verbindung mit Füllstoffen wie Kalkstein- oder Marmormehl ergeben sich vielfältige Möglichkeiten zur Herstellung von speziellen Injektionsmassen und Reparaturmörteln.

Mischbarkeit

CaLoSil®-pastös kann mit allen Produkten der CaLoSil® Reihe problemlos gemischt werden. Ebenso ist ein Verdünnen mit Ethanol, n-Propanol oder iso-Propanol möglich. Bei einem Vermischen mit Wasser ist zu beachten, dass es, in Abhängigkeit von den zugesetzten Mengen, zur Bildung von gelartigen Systemen bzw. zum Ausflocken von Calciumhydroxidpartikeln kommen kann.

Lieferform / Lagerung

CaLoSiL®-pastös wird in 250 mL, 500 mL, 1 Liter und 2,5 Liter Gebinden angeboten. In geschlossenen Originalgebinden ist CaLoSiL®-pastös bei Temperaturen zwischen 5 °C und 30 °C mindestens 3 Monate lagerfähig. Sollten bei längerer Lagerzeit Nano-Partikel sedimentieren, so können diese durch schütteln des geschlossenen Behälters problemlos dispergiert werden. Eine Beeinträchtigung der Anwendbarkeit ist nicht zu verzeichnen.

IBZ-Salzchemie GmbH & Co.KG

Sicherheit

CaLoSiL®-pastös ist leicht entzündlich und stark alkalisch. Bei einer Anwendung ist unbedingt zu beachten, dass Luft-Ethanol-Gemische mit hoher Entflammbarkeit gebildet werden, deren Einatmung gleichzeitig gesundheitliche Schäden hervorrufen kann. Generell sind Handschuhe, Atemmaske und Schutzbrille in Verbindung mit zweckmäßiger Kleidung zu tragen. Mögliche Zündquellen sind unbedingt vorher zu entfernen. Es ist auf eine ausreichende Belüftung zu achten. Bitte beachten Sie die in unseren Sicherheitsdatenblättern aufgeführten Richtlinien.

Es wird generell das Anlegen einer Testfläche empfohlen. Bitte wenden Sie sich bei allen Fragen z.B. zur Handhabung, Anwendbarkeit, Reaktivität oder bezüglich der Auswahl des geeigneten Produktes direkt an uns. Wir bieten auch die Möglichkeit der Durchführung von Vorversuchen in unserem Labor an.

Vorstehende Informationen wurden nach dem neusten Stand der Entwicklung und Anwendungstechnik zusammengestellt. Da Anwendung und Verarbeitung außerhalb unseres Einflusses liegen, kann aus dem Inhalt dieser Anwendungshinweise keine Haftung des Herstellers abgeleitet werden.

IBZ-Salzchemie GmbH & Co.KG

CaLoSiL®-mikro Calciumhydroxid-Mikropartikel

Eigenschaften

CaLoSiL®-mikro besitzt Eigenschaften, die zwischen denen der CaLoSiL® Nano-Sole und von traditionellem Weißkalkhydrat liegen. Die Partikelgröße beträgt 1 bis 3 µm. Als Dispergiermedium dient wiederum Ethanol. Der Kalkgehalt der Suspension beträgt 120 g/L.

Einsatzgebiete / Anwendungen

CaloSil.®-mikro ist eine speziell hergestellte Calciumhydroxidsuspension zur Festigung von Stein, Putz und Mörtel. Es findet insbesondere zum Füllen von gröberen Rissen, Fugen oder Poren Anwendung, Ebenso ist das Hinterfüllen von Schalen und Schuppen möglich. Durch den Zusatz von Gesteinsmehlen (z.B. Marmor- oder Kalksteinmehlen) können spezielle Injektionsmassen oder Reparaturmörtel hergestellt werden. CaloSil.®-mikro kann mit allen CaloSil.®-Nanosolen (CaloSil. E-25, IP-25 etc.) problemlos gemischt werden. CaloSil.®-mikro weist eine, dem CaloSil.®-pastös ähnliche, sehr dünnflüssige Konsistenz auf.

Lieferform / Lagerung

CaLoSiL®-mikro wird 0,25 Liter, 0,5 Liter und 1 Liter Gebinden angeboten.

Sicherheit

CaLoSiL®-mikro ist leicht entzündlich und stark alkalisch. Es ist unbedingt zu beachten, dass beim Trocknen Gase mit hoher Entflammbarkeit gebildet werden, deren Einatmung gleichzeitig gesundheitliche Schäden hervorrufen kann. Generell sind Handschuhe und Schutzbrille in Verbindung mit zweckmäßiger Kleidung zu tragen. Mögliche Zündquellen sind unbedingt vorher zu entfernen. Es ist auf eine ausreichende Belüftung zu achten. Bitte beachten Sie die in unseren Sicherheitsdatenblättern aufgeführten Richtlinien.

Es wird generell das Anlegen einer Testfläche empfohlen. Bitte wenden Sie sich bei allen Fragen z.B. zur Handhabung, Anwendbarkeit, Reaktivität oder bezüglich der Auswahl des geeigneten Produktes direkt an uns. Wir bieten auch die Möglichkeit der Durchführung von Vorversuchen in unserem Labor an.

Vorstehende Informationen wurden nach dem neusten Stand der Entwicklung und Anwendungstechnik zusammengestellt. Da Anwendung und Verarbeitung außerhalb unseres Einflusses liegen, kann aus dem Inhalt dieser Anwendungshinweise keine Haftung des Herstellers abgeleitet werden.

IBZ-Salzchemie GmbH & Co.KG

Technisches Merkblatt

CaLoXiL Kalk-Injektionsmasse

Eigenschaften

CaLoXiL ist eine gebrauchsfertige, fließfähige Injektionsmasse auf der Basis von Nano-Kalk (CaLoSiL®) und feinteiligen Marmormehlen. CaLoXiL enthält Ethanol, wodurch ein schnelles Trocknen gewährleistet ist. Aufgrund der geringen Korngröße der Feststoffe ist ein sehr gutes Eindringen auch in kleinste Öffnungen gegeben. Die Nutzung von CaLoSiL® als Bindemittel führt zudem zur Ausbildung feinster Calciumcarbonatkristalle, welche durch Reaktion mit atmosphärischem CO₂ entstehen.

Charakteristische Eigenschaften sind:

Korngröße der Feststoffe: < 4 µm
Druckfestigkeit nach 14 Tagen: 2,1 N/mm²
Porosität: 36,2 Vol.-%
Kapillare Wasseraufnahme: 3,2 Ma.-%
Masseverlust nach 25 Frost-Tau Zyklen: 20 Ma.-%
Schrumpfung: < 0,4 %

Einsatzgebiete

CaLoXiL wird zum Verfüllen und Überbrücken von Hohlräumen, Rissen, Schalen und Schuppen eingesetzt.

Anwendung

CaLoXiL wird wie alle Injektionsmassen mittels Kanüle oder mit speziellen Injektionsnadeln in die zu behandelnden Bereiche eingebracht. Zum Auffüllen von Hohlräumen kann die Injektionsmasse auch über einen Trichter aufgegeben werden. Vor dem Einsatz ist die Injektionsmasse homogen aufzurühren. Eine Anwendung auf gefrorenem Untergrund sowie bei Temperaturen über 30 °C ist nicht möglich. Die eingesetzten Arbeitsgeräte können problemlos mit Wasser gereinigt werden.

Lieferform / Lagerung

CaLoXiL kann in 250 mL, 500 mL sowie 1 Liter und 2,5 Liter Gebinden bezogen werden. Im geschlossenen Gebinde ist CaLoXiL bei Temperaturen zwischen 5 °C und 30 °C mindestens 1 Jahr lagerfähig.

IBZ-Salzchemie GmbH & Co.KG

Sicherheit

CaLoXiL reagiert stark alkalisch. Es enthält Ethanol und Luftkalk (Ca(OH)₂). Bei der Handhabung sind entsprechende Sicherheitsvorkehrungen (Schutzbrille, Handschuhe) zu treffen. Es ist zu beachten, dass beim Verdunsten Alkoholdämpfe entstehen, die brennbar bzw. explosiv sind. Für ausreichende Belüftung ist zu sorgen. Bitte beachten Sie die Angaben in unserem Sicherheitsdatenblatt.

Es wird generell das Anlegen einer Testfläche empfohlen. Bitte wenden Sie sich bei allen Fragen z.B. zur Handhabung, Anwendbarkeit, Reaktivität oder bezüglich der Auswahl des geeigneten Produktes direkt an uns. Wir bieten auch die Möglichkeit der Durchführung von Vorversuchen in unserem Labor an.

Vorstehende Informationen wurden nach dem neusten Stand der Entwicklung und Anwendungstechnik zusammengestellt. Da Anwendung und Verarbeitung außerhalb unseres Einflusses liegen, kann aus dem Inhalt dieser Anwendungshinweise keine Haftung des Herstellers abgeleitet werden.

IBZ-Salzchemie GmbH & Co.KG

BERICHT SANDMISCHUNG NACH DER FULLERKURVE

Nr. STONECORE 09/06/25 Sande nach der Fullerkurve

Bearbeiter Thomas Köberle

Datum des Berichts 25.06.09

Fragestellung

- Mischen von unterschiedlichen Sanden zu einer annähernd optimalen Siebline nach Fuller

Material

fünf unterschiedliche Sande von:

Kremer Pigmente GmbH & Co. KG Hauptstr. 41 – 47 DE 88317 Aichstetten

Tel. 0049 75 65 911 20 Fax 0049 75 65 16 06

E-Mail: info@kremer-pigmente.de

Sand 1	Quarzsand hellgrau feiner Sand 0,5 - 1 mm Artikelnummer: 58678
Sand 2	Quarzmehl gesiebt 0,4 - 0,5 mm Artikelnummer: 58660
Sand 3	Quarzmehl gesiebt 0,25 - 0,4 mm Artikelnummer: 58650
Sand 4	Quarzmehl gesiebt 0,1 - 0,25 mm Artikelnummer: 58640
Sand 5	Quarzmehl gesiebt 0,04 - 0,15 mm Artikelnummer: 58630

Vorgehen

Von den einzelnen Grenzkörnungen wird der Anteil durch Einsetzen in die Fullerformel¹ berechnet.

Formel: $A = 100 \% * (d / D)^n$

A: Anteil einer Korngruppe [Vol %]

d: ein beliebiger Korndurchmesser zwischen 0 und D [mm]

D: Größtkorndurchmesser der Siebline [mm]

n: Korrekturwert (für gerundete Körner = 0,4)

Ergebnisse

Korngröße [mm]	Siebdurch-gang [Vol %]	Anteil [Vol %]			Korrekturfaktor 1,186 nultipliziert ²
1	100	24,22		28,72	
0,5	75,78	24,22	6,47	20,72	7,67
0,4	69,31	16,78	0,47	19,9	7,07
0,2	52,53	10,70	15,5	15,5	
0,25	57,43	17,63		20,91	
0,1	39,8	17,03		20,71	
0,15	46,8	19,21		22,78	
0,04	27,59	17,21		22,76	
Summe			84,31		99,98

Aus den Werten in den letzten beiden Spalten werden 100 ml Sand gemischt.

Tabellarische Ansicht der Verteilung

Korngröße	Summe 100 ml	Summe 300 ml	Summe 600 ml	
0,5 - 1	28,72 ml	86,16	172	
0,5 - 0,4	7,67 ml	23,01	46	
0,4 - 0,2	19,9 ml	59,7	118	
0,25 - 0,1	20,91 ml	62,73	124	
0,15 - 0,04	22,78 ml	68,34	136	

aus GRÜBL, WEIGLER UND KARL (2001): Beton - Verlag Ernst & Sohn; 2. Aufl. S. 137

HfBK Dresden Nr. STONECORE

Korrekturfaktor: 100 : 84,31 (Summe der Anteile) = 1,186

BERICHT MÖRTELPRISMEN AUS DOLOMITHALTIGEM MÖRTEL

Nr. STONECORE 10/01/13 Mörtelprismen (2*2*10) mit dolomithaltigem

Mörtel

Bearbeiter Thomas Köberle

Datum des Berichts 13.01.2010

Fragestellung

 Herstellen von M\u00f6rtelprismen mit den Mischungsverh\u00e4ltnissen 1:13 (Volumenverh\u00e4ltnis!!) in einer neu entwickelten Form

In Massenmischungsverhältnis umgerechet ergibt das 1:33,68

Material

als Prismenformen wird eine selbst entworfene Form aus Plexiglas und Multiplexplatten verwendet. Die Form enthält 2 mal 10 Einzelformen.¹

Jede Prismenform hat die Abmessungen: 2 * 2 * 10 cm

Sandmischung	Sandmischung M2 (Fuller - Sand) siehe Bericht: STONECORE 09/06/25 Sande nach der Fullerkurve Schüttdichte ² : 1,71 Kg/l
Bindemittel	Dolomitkalkhydrat EN 459-1 DL 85-S Materialmuster von Rheinkalk Akdolit Kasselburger Weg 54570 Pelm Schüttdichte: 0,66 Kg / 1

Vorgehen

Die Mischung wird nach Gewichtsanteilen zusammengestellt. Anschließend wird der Mörtel in die Prismen gestrichen und in der Form eine Woche im Klimaschrank (20° C / 85% rel. Luftfeuchitgkeit / 2% CO₂) gelagert. Nach dem Ausschalen verbleiben die Prismen eine weitere Woche im Klimaschrank.

siehe Abbildung im Anhang

die Schüttdichte wurde an fünf Proben ermittelt siehe Bericht: STONECORE 09/05/13 Mörtelprismen mit dolomithaltigem Mörtel

Mörteldaten

Proben- nummer	Mischungs -verhältnis	Volumen Sand- mischung [ml]	Masse Sand- mischung	Volumen Dolomit- kalkhydrat [ml]	Masse Dolomit- kalkhydrat [g]	Masse Wasser- zugabe
DL 1:13	1:13	975	1667,25	75	49,5	124
DL 1:13	01:13	780	1333,8	60	39,6	99,2

Ergebnisse

Die zweite Mischung mit 780 g Sand ist für die Form ausreichend.

Anhang

Abbildung der entwickelten Prismenform.

Auf eine Grundplatte mit seitlichem Rahmen aus siebdruckbeschichteten Multiplexplatten wird die eigentliche Form aus 10 mm starkem Plexiglas eingesetzt. Die äußersten Rahmenhölzer verspannen die inneren Plexiglasfächer mit zwei Gewindestäben.

Der Maßstab entspricht 10 cm

HfBK Dresden Nr. STONECORE

2/2

BERICHT MÖRTELPRISMEN AUS GIPSMÖRTEL GM3

Nr. STONECORE 10/03/29 Mörtelprismen (2*2*10) mit Gipsmörtel

Bearbeiter Thomas Köberle

Datum des Berichts 29.03.2010

Fragestellung

 Herstellen von Mörtelprismen mit den Mischungsverhältnissen 1:8 (Volumenverhältnis!!) in einer neu entwickelten Form. Als Bindemittel wird aufgemahlenes und gesiebter (< 0,5 mm)
 Originalmörtel aus Dahlen verwendet (D_015)

Material

als Prismenformen wird eine selbst entworfene Form aus Plexiglas und Multiplexplatten verwendet. Die Form enthält 2 mal 10 Einzelformen.

Jede Prismenform hat die Abmessungen: 2 * 2 * 10 cm

Sandmischung	Sandmischung M2 (Fuller - Sand) siehe Bericht: STONECORE 09/06/25 Sande nach der Fullerkurve Schüttdichte ¹ : 1,71 Kg/1			
Bindemittel	aufgemahlener Gipsmörtel aus Dahlen (D_015). Der Mörtel besteht aus Gips als Bindemittel und Sandzuschlag, die genaue Zusammensetzung ist nicht bekannt. Schüttdichte: 1,1 Kg/1			

Vorgehen

Die Mischung wird nach Gewichtsanteilen zusammengestellt. Anschließend wird der Mörtel in die Prismen gestrichen und in der Form einige Tage im Labor gelagert.

die Schüttdichte wurde an fünf Proben ermittelt siehe Bericht: STONECORE 09/05/13 Mörtelprismen mit dolomithaltigem Mörtel

Mörteldaten

Proben- nummer	Mischungs -verhältnis	Volumen Sand- mischung [ml]	Masse Sand- mischung	Volumen D_015 [ml]	Masse D_015	Masse Wasser- zugabe
GM3	1:8	1200	1732	150	172	100
GM3	1:8	800	1196,5	100	113	100

Ergebnisse

Die zweite Mischung mit 800g Sand ist für die Form ausreichend. Es bleibt ein kleiner Rest über.

HfBK Dresden Nr. STONECORE

2/2

PROTOKOLL FÜLLSTOFFMISCHUNG NACH DER FULLERKURVE

Bearbeiter A. Dähne / T. Köberle

Datum 27.08.10

Fragestellung

Mischen von unterschiedlichen Füllstoffen zu einem Gemisch mit optimierter Packungsdichte nach Fuller

Materialien

Hohlglaskügelchen Scotchlite[™]S22 Hohlglaskügelchen Scotchlite[™]K1 Champagner Kreide

bezogen von:

Kremer Pigmente GmbH & Co. KG Hauptstr. 41 – 47 DE 88317 Aichstetten

Tel. 0049 75 65 911 20 Fax 0049 75 65 16 06

E-Mail: info@kremer-pigmente.de

Vorgehen

Von den Füllstoffen wurde anhand der mittleren Partikelgröße der Anteil durch Einsetzen in die Fullerformel¹ berechnet.

 $A = 100 \% * (d/D)^n$

A ... Volumenanteil einer Korngruppe [Vol %]
 d ... mittlerer Korndurchmesser [μm]
 D ... Größtkorndurchmesser der Siebline [μm]
 N ... Korrekturwert (für gerundete Körner = 0,4)

aus GRÜBL, WEIGLER UND KARL (2001): Beton - Verlag Ernst & Sohn; 2. Aufl. S. 137

Partikelgrößen nach Lieferantenangabe (Produktdatenblätter Kremer Pigmente GmbH)

Scotchlite[™] K1

Mittlere Partikelgröße = 75 µm

Maximale Partikelgröße = 120 μm

ScotchliteTM S22

Mittlere Partikelgröße = 29 μm

Maximale Partikelgröße = 53 μm

Champagner Kreide

Mittlere Partikelgröße = 5 µm

Maximal Partikelgröße = 30 μm

Berechnung der Volumenanteile

 A_{S22} = 100% * (29 / 120)^{0,4} = 57 Vol% = 0,57 I/I A_{ChK} = 100% * (5 / 120)^{0,4} = 28 Vol % = 0,28 I/I

 $A_{K1} = 100\% - 57\% - 29\% = 15 \text{ Vol}\% = 0,15 \text{ I/I}$

Ermittlung der Massenanteile

(bezogen auf 1 Liter Volumen)

 $m_F = A_F * \rho_{SCH,F}$

Masse des Füllstoffs [g] m ...

Volumen des Füllstoffs [I] Α ...

Schüttdichte des Füllstoffs OSCH.F

Schüttdichte (gravimetrische Bestimmung)

Scotchlite[™] K1

 $\rho_{SCH} = 298,7 \text{ g/l}$

Scotchlite[™] S22

 $\rho_{SCH} = 107,5 \text{ g/l}$

Champagner Kreide

 $\rho_{SCH} = 953,9 \text{ g/l}$

 $m_{S22} = 0.57 * 107.5 g = 61.3 g$

 $m_{ChK} = 0.28 * 953.9 g = 267.1 g$

 $m_{K1} = 0.15 * 298.7 g = 44.8 g$

 $\sum m = 373,2 g$

Massenanteile:

Ma% (S22) = 16,4

Ma% (ChK) = 71,6

Ma% (K1) = 12,0

Ort	Leuben				Bezeichnung	L_P05
Objekt	Schloß			Fur	nktionale Mörtelart	Putzmörtel
Objektteil	Erdgeschoß		Bildunterkar	schliff nte 36 mm gefeuchtet	determination of	
Raum Bereich			Mörtel- oberfläche im Bild	oben		
	obennahme auf Befund	2008.10.07				
Ent	nahmestelle					n Aur
Pro	bennehmer	Köberle			Fotodatei	
Komment	ar zur Probe					

Gefüge	/	9334 W	en - 21				
(Sefüge	partikelgestü	itzt	ı	Matrix-Partikel V	erhältnis	30:70
Matrix							
	Farbe	beige			Bindemittelanre		
Gesamtfarbe feucht, nach MUNSELL		10YR 8/2			Vorhan		
Ritzhärte		mit Fingern.	ritzbar			rbe beig	10000000000000000000000000000000000000
Porenanteil sichtba	ır ca. in %	5-10			Farbe feucht, n. MUN		R 8/2
indemittel mikrochemisch	bestimmt	Kalk, vermut	tlich hydra	ulisch	max. Größe		
Zuschläge					Anfärbung auf	Mg nich	t durchgefü.
	,5	Sortierung	mäßigso	ortiert V	erunreinigungen / Zusätze		
	Korr	nform		Best			Anteil
Grobkorn > 0,63 mm	gut g	erundet Gest		Gesteinsbrud	überwiegend transparent) isbruch (Sandstein grün und rot nig) (calcitisch gebundener SS beige)		Viel
Mittelkorn 0,63 - 0,25 mm	geru	0 - 1 - 1		Quarz (traspa Gesteinsbrud	parent, milchig, teilweise rötlich) uch (SS)		Mittel
<u> </u>				Quarz			
Feinkorn < 0,25 mm	geru	ndet					Wenig
Commentar	-			•		Vergleic	hbar mit
Der homogene feinko geglättet.	örnige K	alkmörtel wurd	de auf Stro	ohmatten aut	fgebracht und	L_P06a	
Auf der Oberfläche s 1: weiße Schicht, ev. 2: gelbe Schicht			n erhalten:	:1			
3: rote Schicht, diese	nur in k	leinen Resten					

Ort Leub Objekt Schlo		Fun	Bezeichnung L_P ktionale Mörtelart Stuc	06a kmörtel
Objektteil Ostfa Raum	ssade	Anschliff Bildunterkante 36 mm angefeuchtet		
Bereich		Mörtel- oberfläche im Bild		
Datum Probenna Verweis auf B		ili bid		b
Entnahme	stelle Fundstück		To A State	a
Probenne	hmer Köberle		Fotodatei L_P0	06.jpg
Kommentar zur	Probe Stuckfragment,	zweiteilig, Hier wir	d der untere Teil (a) behand	lelt.
L Gefüge				
G	efüge partikelgestützt		Matrix-Partikel Verhältnis	70:30
Matrix	Farbe hellbeige		Bindemittelanreicherung	en z.B. Kalkspatzen
Gesamtfarbe feucht, nach M	MUNSELL 10Y 6/2		Vorhanden ☐	ja 🛛 nein
Ritz	härte mit Fingern. nic	cht ritzbar	Farbe	
Porenanteil sichtbar	ca. in %		Farbe feucht, n. MUNSELL	
Bindemittel mikrochemisch	_{bestimmt} Kalk		max. Größe [mm]	
Zuschläge			Anfärbung auf Mg	
Größtkorn [mm] 2,	2 Sortierung g	ut sortiert V	erunreinigungen / Zusätze	
	Kornform	Quarz (trans	and parent oder milchig)	Anteil
Grobkorn > 0,63 mm	gut gerundet		chstücke (SS)	Mittel
Mittelkorn 0,63 - 0,25 mm	gut gerundet	Quarz (trans	parent oder milchig)	Mittel
Feinkorn < 0,25 mm	gerundet	Quarz (trans	parent oder milchig)	Wenig
Kommentar	i.		Verglei	chbar mit
Von seiner Zusamme	tucks ist ein hellbeiger fe nsetzung (Sand und Bind enputz auf Strohmatten	demittel) ist er mit d		

On Lead	CII			Bezeichnung	L_FU	OD
Objekt Schlo	Ac		Fur	ktionale Mörtelart	Stuckr	mörtel
	fassade	Bildunt	Anschliff terkante 36 mm angefeuchtet		ШШ	
Raum Bereich		Mörtel oberfläch	-			100
		im Bild	í			—b
Datum Probenn		2008.10.07		A contract		
Verweis auf B		2				•
Entnahme	estelle	Fundstück		100	Ber	a
Probenne	hmer	Köberle		Fotodatei	L_P06	Kopie
Kommentar zur	Probe	Stuckfragment, zweite	ilig. Hier wir	d der obere Teil (b) be	ehandelt	Ĺ.
Gefüge						
Matrix	Sefüge	matrixgestützt		Matrix-Partikel Verh	ältnis	70:30
	Farbe	cremeweiß		Bindemittelanreich	erunge	n z.B. Kalkspatzen
Sesamtfarbe feucht, nach	MUNSELL	10YR 10/2		Vorhander		
Ritzhärte mit Fingern. nicht ritzb		ar	ar Farbe weiß			
Porenanteil sichtbar ca. in % 5			Farbe feucht, n. MUNSELL	. N 9		
Bindemittel mikrochemisch	bestimmt	Kalk-Gips		max. Größe [mr	_{n]} 2	
Zuschläge				Anfärbung auf Mg	1	
Größtkorn [mm] 1	,5	Sortierung gut sortie	ert V	/erunreinigungen / Zusätze	-	
	Korn	form	Best		_	Anteil
Grobkorn > 0,63 mm	ange	rundet	beige Komponenten, porös, länglich Bestimmung nicht möglich			Wenig
Mittelkorn 0,63 - 0,25 mm	ange	angerundet - gut gerundet		Quarz (transparent und milchig weiß) grüne Schiefer		Viel
Feinkorn < 0,25 mm	angerundet - gut gerundet		Quarz (transparent und milchig weiß)			Mittel
Kommentar	•			Ve	rgleic	hbar mit
Oberfläche liegt eine Die Haftung zum Unt	weiße T ergrund	und homogen gemager ünche. ist schlecht, zahlreiche sind in den Rissen Rek	oberflächen	parallele Risse		

On Danien			Bezeichnung	D_P02a	
Objekt Schloß		Funi	ktionale Mörtelart	Stuckmörtel	
Objektteil	Bildu	Anschliff			
Raum	Mört	angefeuchtet	ACCOUNT OF THE PARTY OF	h	
Bereich	oberfläc im B	ne	2 2	D	
Datum Probennah			Time .	20 00	
Verweis auf Befo			11750		
Entnahmest	elle Fundstück		Y	a	
Probennehr	mer Köberle		Fotodatei	D_02.jpg	
Kommentar zur Pr	obe Probe ist zweilagig au	ıfgebaut, hier	wird der graue Grund	dstuck (a) beschrieben	
Gefüge					
Gef	üge matrixgestützt	N	Matrix-Partikel Verh	ältnis 90-10	
Matrix	ula hallarar	Г	B		
Fa Gesamtfarbe feucht, nach MUN		hellgrau		Bindemittelanreicherungen z.B. Kalkspatzen Vorhanden ☐ ja ☒ nein	
Gesamtrarbe feucht, nach ΜυΝ		nar	Farbe		
Porenanteil sichtbar ca.	57970	- I	Farbe feucht, n. MUNSELL		
Bindemittel mikrochemisch bes			max. Größe [mm]		
Zuschläge	Kalkanteil	Į	Anfärbung auf Mg nicht durchgefü.		
Größtkorn [mm]	Sortierung -	Ve	erunreinigungen S / Zusätze	Sägemehl, Holzkohle	
	Kornform	Besta	and	Anteil	
Grobkorn > 0,63 mm					
Mittelkorn 0,63 - 0,25 mm					
Feinkorn < 0,25 mm					
Kommentar		÷	Ve	rgleichbar mit	
angemacht und applizie Sägemehl als Verunrein ist nicht klar. Der Anteil Vereinzelte Holzkohlepa	d kaum Zuschläge zu erkenr rt. Auffallend ist das Vorkom igung, oder als bewußt eing ist mit einem Prozent auch a rrtikel sind als Verunreinigun gelig) oder eckig (ohne besc	men von Säg esetzter Zusa Ils gering zu b g zu sehen.	emehl. Ob das tz zu sehen ist, etrachten.		

Datenblatt: Vergleichende Mörteluntersuchung an Anschliffen

EU - Projekt: stonecore

Bildunte Mörtel- oberfläche im Bild	Fun Anschliff erkante 36 mm angefeuchtet	Bezeichnung aktionale Mörtelart	D_P0	
Bildunte Mörtel- oberfläche	Anschliff erkante 36 mm	ktionale Mörtelart	Stuckn	nörtel
Bildunte Mörtel- oberfläche	erkante 36 mm			
oberfläche				
	oben	4 9	327	b
2008.10.07		(2000)	3	
			-	
Fundstück				a
Köberle		Fotodatei	D_P02	ijpg
Probe ist zweilagig auf	gebaut, hier	r wird der weiße Deck	stuck (b) beschrieben
matrixgestützt	1	Matrix-Partikel Verhä	iltnis	90:10
sehr helles grau		Bindemittelanreich	erungei	n z.B. Kalkspatzen
N8		Vorhanden	☐ ja	⊠ nein
Ritzhärte mit Fingern. nicht ritzbar		1725 21		
10		Farbe feucht, n. MUNSELL		
Gipsmörtel, geringer		max. Größe [mm	1	
Kalkanteil		Anfärbung auf Mg	3	
Sortierung -	v	erunreinigungen S	ägemeh	ıl, Holzkohle
orm	Best	and		Anteil
		Ve	rgleich	nbar mit
allend ist das Vorkomm oder als bewußt einges einem Prozent auch als ind als Verunreinigung oder eckig (ohne beson Aufwölbungen in der po raufnahme) kam es zu	nen von Säg setzter Zusa s gering zu l zu sehen. deres ausg olierten Obe r Volumenv	gemehl. Ob das atz zu sehen ist, betrachten. eeprägte Form) erfläche. Durch eergrößerung und		
	Köberle Probe ist zweilagig aufg matrixgestützt sehr helles grau N8 mit Fingern. nicht ritzba 10 Gipsmörtel, geringer Kalkanteil Sortierung - orm caum Zuschläge zu erk allend ist das Vorkomm oder als bewußt einges einem Prozent auch als ind als Verunreinigung der eckig (ohne beson Aufwölbungen in der p raufnahme) kam es zu	Köberle Probe ist zweilagig aufgebaut, hier matrixgestützt sehr helles grau N8 mit Fingern. nicht ritzbar 10 Gipsmörtel, geringer Kalkanteil Sortierung - V orm Best saum Zuschläge zu erkennen. Er v allend ist das Vorkommen von Sä oder als bewußt eingesetzter Zus- einem Prozent auch als gering zu ind als Verunreinigung zu sehen. der eckig (ohne besonderes ausg Aufwölbungen in der polierten Obraufnahme) kam es zur Volumenv	Köberle Fotodatei Probe ist zweilagig aufgebaut, hier wird der weiße Decks matrixgestützt Matrix-Partikel Verhä sehr helles grau N8 mit Fingern. nicht ritzbar 10 Gipsmörtel, geringer Kalkanteil Farbe feucht, n. MUNSELLL max. Größe [mm] Anfärbung auf Mg Sortierung - Verunreinigungen S / Zusätze Drm Bestand Vel Kaum Zuschläge zu erkennen. Er wurde ohne Sand allend ist das Vorkommen von Sägemehl. Ob das oder als bewußt eingesetzter Zusatz zu sehen ist, einem Prozent auch als gering zu betrachten.	Fotodatei D_P02 Probe ist zweilagig aufgebaut, hier wird der weiße Deckstuck (b matrixgestützt Matrix-Partikel Verhältnis Bindemittelanreicherunger N8 mit Fingern. nicht ritzbar 10 Gipsmörtel, geringer Kalkanteil Farbe Farbe feucht, n. Munsell. max. Größe [mm] Anfärbung auf Mg Sortierung - Verunreinigungen Sägemeh / Zusätze Bestand Vergleicl kaum Zuschläge zu erkennen. Er wurde ohne Sand allend ist das Vorkommen von Sägemehl. Ob das oder als bewußt eingesetzter Zusatz zu sehen ist, einem Prozent auch als gering zu betrachten. ind als Verunreinigung zu sehen. der eckig (ohne besonderes ausgeprägte Form) Aufwölbungen in der polierten Oberfläche. Durch raufnahme) kam es zur Volumenvergrößerung und

	ahlen chloß			Fun	Bezeichnung ktionale Mörtelart	D_P03 Stuckmörtel
Objektteil Raum			Bildunter	nschliff kante 36 mm ingefeuchtet		
Bereich			Mörtel- oberfläche im Bild	oben	9	
Datum Probe	nnahme	2008.10.07	an said			
Verweis au	f Befund				100	
Entnah	mestelle	Fundstück			- 6	
Prober	nehmer	Köberle			Fotodatei	D_P03.jpg
Kommentar z	ur Probe	Der schwarze	Stuck sta	mmt verm	utlich vom Kamin	
Gefüge						
Matrix	Gefüge	matrixgestütz	t		Matrix-Partikel Verh	ältnis 100-0
	Farbe	schwarz			Bindemittelanreich	erungen z.B. Kalkspatzen
Gesamtfarbe feucht, na	ach MUNSELL	N3			Vorhander	
ı	Ritzhärte	mit Fingern. r	icht ritzba		Farbe	
Porenanteil sich	htbar ca. in %	10			Farbe feucht, n. MUNSELL	
Bindemittel mikrochemi	isch bestimmt	Gips			max. Größe [mn	
Zuschläge				1	Anfärbung auf Mg	<u> </u>
Größtkorn [mm]		Sortierung	5	V	erunreinigungen - / Zusätze	
	Korn	form	- 	Best	and	Anteil
Grobkorn > 0,63 mm						
Mittelkorn 0,63 - 0,25 mm						
Feinkorn < 0,25 mm						
Kommentar			•		Ve	rgleichbar mit
Große runde Kuge Poren (0,1 mm), vi Auskleidung. Diese entstanden vermut primär durch krista ausgelöst. Bei den nur noch als Pore Abbinden entstand anderen, kugeliger	ele mit eine e besteht e dich durch illine Körpe weißen Gi erkennbar lene Kristal	em weißen Ker benfalls aus Gi Wasserübersch r besetzt worde pskristallen, die sind handelt es lle. Diese Krista	n oder zun ps. Die gro nuß im Mö en. Die Kri e heute teil s sich um p alle müßen	nindest ein oßen kugel rtel. Die kle stalle wurd weise aus rimäre im	ner weißen ligen Poren einen Poren sind en sekundär gelöst sind und Gips beim	

Ort	Dahlen				Bezeichnung	D_P05a
Objekt	Schloß			Fun	ktionale Mörtelart	Putzmörtel
Objektteil Raum	1. Obergesch	noß	Bildunterkar	schliff nte 36 mm gefeuchtet		
Bereich			Mörtel- oberfläche im Bild	oben	The same of the sa	→ ND
Datum Pro	bennahme	2008.10.07			A STATE OF THE PARTY OF THE PAR	
Verweis	auf Befund				The Country of the Co	
Entr	nahmestelle	Fundstück			a :	
Pro	bennehmer	Köberle			Fotodatei	D_P05.jpg
Kommenta	r zur Probe	Das Stuckfrag behandelt	gment beste	ht aus di	rei Lagen. Hier wird nu	ur die untere Lage a

Geruge			
Gefüge	partikelgestützt	Matrix-Partikel Verhältnis 60:40	
Matrix			
Farbe	weiß	Bindemittelanreicherungen z.B. Kalkspatzen	
Gesamtfarbe feucht, nach MUNSELL	10YR 10/1	Vorhanden ⊠ ja ⊠ nein	
Ritzhärte	mit Fingern. ritzbar	Farbe	
Porenanteil sichtbar ca. in %	10	Farbe feucht, n. MUNSELL	
Bindemittel mikrochemisch bestimmt	Gips, geringer vermutlich	max. Größe [mm]	
hdraulischer Kalkanteil Zuschläge		Anfärbung auf Mg	

Größtkorn [mm] Sortierung gut sortiert Verunreinigungen --- / Zusätze

Kornform		Bestand	Anteil
Grobkorn > 0,63 mm	subrounded - rounded	milchige Quarze, weiß und rötlich, transparente Quarze, Gesteinsbruchstücke (Granit und Sandstein)	Mittel
Mittelkorn 0,63 - 0,25 mm rounded		milchige und transparente Quarze, weiß und rötlich. Vereinzelt Gesteinsbruchstücke und Holzkohle	Viel
Feinkorn < 0,25 mm	rounded	milchige und transparente Quarze, weiß und rötlich	Mittel

Kommentar Vergleichbar mit

Der Gipsmörtel ist feinkönrnig (Größtkorn etwa 2 mm), cremeweiß und dicht. Auffällig ist die Magerung mit Sand. Die anderen Sandmörtel sind mit Kalk als Bindemittel angefertigt.

Auffällig sind große runde und langgestreckte Poren.

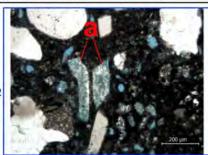
Der Mörtel ist nicht geglättet.

Ort Dahlen			Bezeichnung	D_P05b	
Objekt Schloß		Fur	nktionale Mörtelart	Stuckmörtel	
Objektteil		Anschliff erkante 36 mm			
Raum		angefeuchtet			
Bereich	Mörtel- oberfläche im Bild	oben	Contract of the Contract of th) VD	
Datum Probennahm	e 2008.10.07		A Transmission		
Verweis auf Befun	d		The Samuel State of the Sa	Size and the second	
Entnahmestel	le Fundstück		a		
Probennehme	er Köberle		Fotodatei	D_P05.jpg	
Kommentar zur Prot	Das Stuckfragment be behandelt	steht aus d	rei Lagen. Hier wird n	ur die mittlere Lage b	
Gefüge					
Gefüg Matrix	ge matrixgestützt		Matrix-Partikel Verh	ältnis 90:10	
Farl	oe grau		Bindemittelanreich	erungen z.B. Kalkspatzen	
Gesamtfarbe feucht, nach MUNSE	LL N7		Vorhander	n □ ja ⊠ nein	
Ritzhär	te mit Fingern. nicht ritzba	ar	Farbe		
Porenanteil sichtbar ca. in	% 10		Farbe feucht, n. MUNSELL	-	
Bindemittel mikrochemisch bestim			max. Größe [mr		
Zuschläge	geringem Kalkanteil		Anfärbung auf Mg		
Größtkorn [mm]	Sortierung	٧		ereinzelt Sägemehl nd Holzkohle	
K	ornform	Best	tand	Anteil	
Grobkorn > 0,63 mm					
Mittelkorn 0,63 - 0,25 mm					
Feinkorn < 0,25 mm					
Kommentar			Ve	rgleichbar mit	
	und dicht. Er ist nicht gema e und perlschnurartige Pore		llig sind		

Ort Dahle			12.	Bezeichnung	D_P05c
Objekt Schlo	IS	0.41		ktionale Mörtelart	Stuckmörtel
Objektteil Raum		Bildunterkar	SChliff nte 36 mm gefeuchtet		
Bereich		Mörtel- oberfläche im Bild	oben		D
Datum Probenna	hme 2008.10.07				
Verweis auf Be	efund			A CARLON DA	
Entnahme	stelle Fundstück			a :	
Probennel	hmer Köberle			Fotodatei	D_P05.jpg
Kommentar zur F	Probe Das Stuckf behandelt	ragment beste	ht aus dr	rei Lagen. Hier wird nu	ur die obere Lage c
Gefüge					
Ge Matrix	efüge matrixgesti	ützt	I	Matrix-Partikel Verhä	ältnis 100:0
	Farbe weiß			Bindemittelanreich	erungen z.B. Kalkspatzen
Gesamtfarbe feucht, nach M				Vorhanden	
Ritzhärte mit Fingern, nicht ritzba			ar Farbe		
	Porenanteil sichtbar ca. in % < 5			Farbe feucht, n. MUNSELL	
Bindemittel mikrochemisch b				max. Größe [mm	n)
Zuschläge	geringem k	Kalkanteil		Anfärbung auf Mg	
Größtkorn [mm]	Sortierung	·	V	erunreinigungen / Zusätze	
	ı Kornform	ï	Best	\$4000 F400 7400 F600	ı Anteil
Grobkorn > 0,63 mm					
Mittelkorn 0,63 - 0,25 mm					
Feinkorn < 0,25 mm					
Kommentar	•			Ve	rgleichbar mit
Der weiße Glättstuck i Auffällig sind die oberf Aufwölbungen und die hauptsächliche Schad	lächenparallelen Ris damit einhergehen	sse und Aufwö de Rißbildung			

Beschreibung				rund, mit isotropen Bestandteilen ev. Glas		
Zuschläge	Sortierung	gut sortiert	Verunreinigungen/ Zusätze			
Korngröße Gr	rößtkorn [mm]	2,5	Mittlere Korngröße [mm] von	0,2	bis 0,4	
Bestand größterAnteil zuerst	Quarz, Geste	einsbruchstücke	e (auch Gips), Mikroklin, serizitisie	erte Fe	eldspäte	
Kornform	eckia m. bea	in. Kantenrundu	una bis aut aerundet			

Porentyp


sekundäre Verfüllungen

runde Luftporen

nein

Detailfoto 1
BUK [mm]:0,5 + pol
CSH - Phasen als
rund Agglomerate

Detailfoto 2 BUK [mm]: 1 II pol Gipsbruchstücke als Bestandteil der Magerung

max. Größe [mm] 1,5

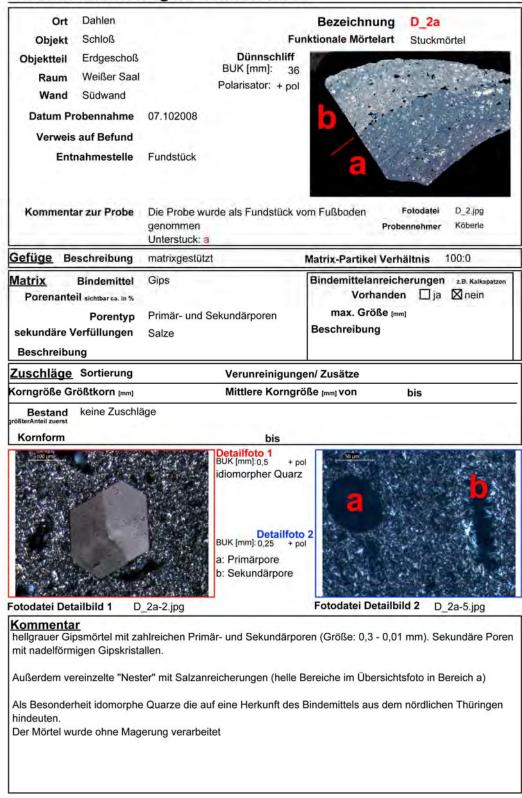
Beschreibung porige Anreicherung,

Fotodatei Detailbild 2 L_12 x5-2.jpg

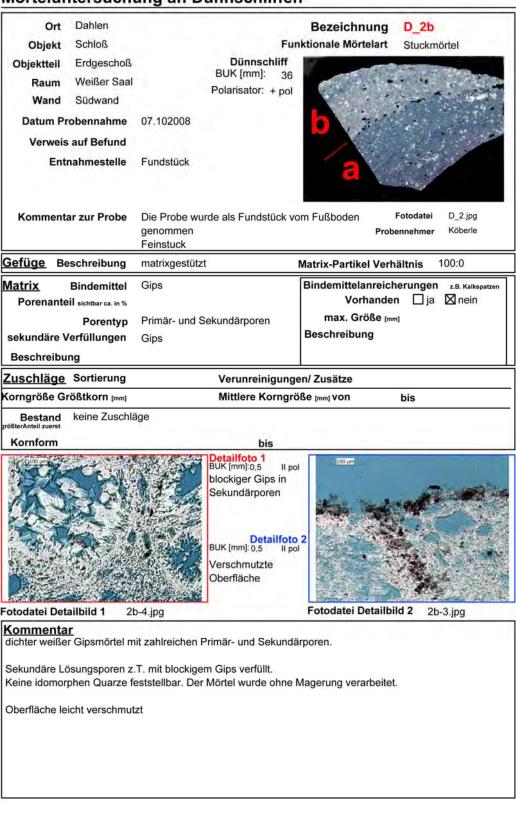
Kommentar

Fotodatei Detailbild 1

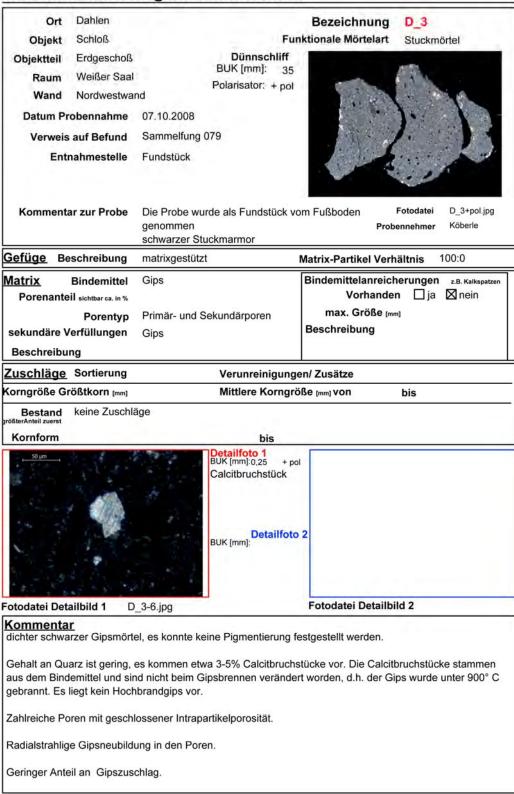
feinkörniger matrixgestützter leicht hydraulischer Kalkmörtel. Bindemittelreich


L_12 x 10-2.jpg

An Zuschlägen kommen Quarz und Gesteinsbruchstücke -darunter auch Gips- vor. Außerdem vereinzelt Mikroklin und serizitierte Feldspäte. Flußsand aus magmatisch metamorphem Liefergebiet, Partikelgröße durchschnittlich 0,2 - 0,4 mm

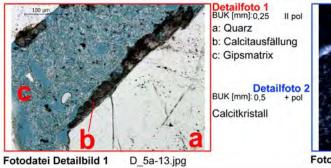

Daneben kommen CSH Phasen als runde Zusammenballungen vor. Das Gefüge ist dicht, es gibt kaum Schwundrisse.

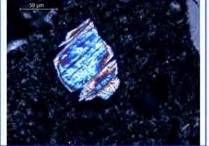
An der Oberfläche liegt eine Gipskruste.


((C) 2009 Thomas Köberle Nordstr. 39 Geologie Denkmalpflege Bauforschung 01099 Dresden

((C) 2009 Thomas Köberle Nordstr. 39 Geologie Denkmalpflege Bauforschung 01099 Dresden

((C) 2009 Thomas Köberle Nordstr. 39 Geologie Denkmalpflege Bauforschung 01099 Dresden




((C) 2009 Thomas Köberle Nordstr. 39 Geologie Denkmalpflege Bauforschung 01099 Dresden

<u>Gefüge</u>	Beschreibung	matrixgestützt	Matrix-Partikel Verhältnis
ind and or	Bindemittel	Gips	Bindemittelanreicherungen z.B. Kalkspatzen
	anteil sichtbar ca. in %	20	Vorhanden ☐ ja ☒ nein
	Porentyp	Primär- und Sekundärporen	max. Größe [mm]
	re Verfüllungen	nein	Beschreibung

<u>Zuschläge</u>	Sortierung	mäßigsortiert	Verunreinigungen/ Zusätze	verei	zelt Holzkohle
Korngröße G	rößtkorn [mm]	2,5	Mittlere Korngröße [mm] von	0,4	bis 0,6
Bestand größterAnteil zuerst	gerundete Q Gipskristalle)		ochene Gipskörner (auffällig ist	eine pa	arallele Einregelung der
Kornform			hin		

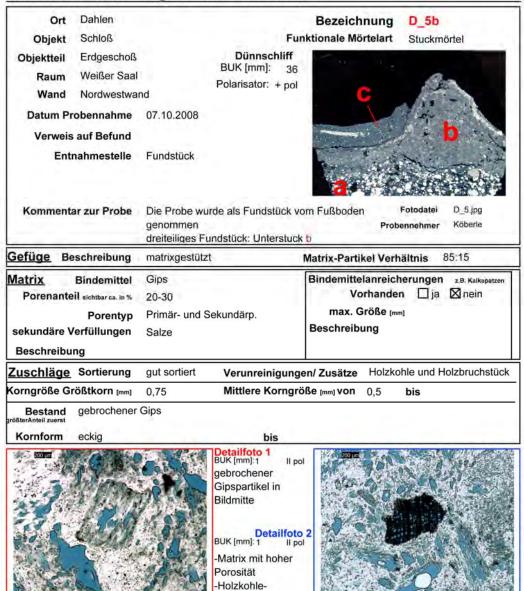
Fotodatei Detailbild 2 D_5a-12.jpg

Kommentar

Gipsmörtel (matrixgestützt) mit sandigem Zuschlag (gerundete Quarzkörner ca. 0,5 mm, Flußsand - wird durch Schneckenschale belegt- aus metamorphem Liefergebiet (Polyquarze)).

Außerdem gebrochene Gipskörner

In einzelnen Bereichen in Saumporen um Quarzkörner feinkristalline Calcitausfällungen, ev. geringer Kalkmörtel Anteil. Da auch Calcitbruchstücke (sehr vereinzelt) nachweisbar sind kein Hochbrandgips.


Holzkohlebruchstück deutet auf Meilerbrand hin.

Hohe Porosität (Größe 0,5 - 0,1 mm), sowohl Wasserporen als auch Luftporen, Porengröße ist inhomogen

((C) 2009 Thomas Köberle Nordstr. 39

Geologie

Denkmalpflege Bauforschung 01099 Dresden

Kommentar

Fotodatei Detailbild 1

Gipsmörtel mit gebrochenen Gipszuschlägen (mittlere Größe 0,5 mm) in geringen Anteilen gemagert. Vereinzelt runde Quarze als Verunreinigung,

bruchstück

außerdem Holzkohlebruchstücke und Holzhäcksel als Verunreinigungen (deutet auf ein Brennen im Meiler hin und nicht auf einen Brand in der Pfanne wie es ebenfalls zu der Zeit üblich war), Beidesmal Laubholz.

hohe Porosität (bis etwa 0,15 mm), Porengröße homogener als in D_5a. Gipsmatrix ist etwas gröber kristallin als in Schicht D_5a

D_5b-6.jpg

Salzeinlagerungen in den randnahen Poren (siehe weiße Bänder in der Übersichtsaufnahme) (Magnesiumsulfat im Bereich c von Frau Dr. Hoblyn mit EDX nachgewiesen)

((C) 2009 Thomas Köberle Nordstr. 39 Geologie Denkmalpflege Bauforschung 01099 Dresden

Fotodatei Detailbild 2

Dresden 0173 / 980 95 76

D_5b-8.jpg

Dünnschliff BUK [mm]:

Polarisator: + pol

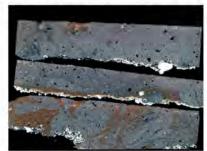
Mörteluntersuchung an Dünnschliffen

Dahlen

Objekt Schloß Objektteil Erdgeschoß Weißer Saal Raum

Wand Südwand SW B 4

Datum Probennahme 19.02.2009


Verweis auf Befund

Entnahmestelle Fundstück

Bezeichnung Funktionale Mörtelart

D 25

Stuckmörtel

Kommentar zur Probe Die Probe wurde als Fundstück vom Fußboden

genommen

Fotodatei Probennehmer D_25.jpg Dähne

z.B. Kalkspatzer

graubraun marmorierter Stuck Beschreibung matrixgestützt

Matrix-Partikel Verhältnis

Bindemittelanreicherungen

100:0

Matrix Gips Bindemittel Porenanteil sichtbar ca. in %

Porentyp

Primär- und Sekundärp.

nein

sekundäre Verfüllungen

Vorhanden ☐ ja ☒ nein max. Größe [mm]

Beschreibung

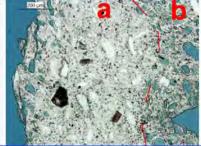
Zuschläge Korngröße Gr	Sortierung
Korngröße Gr	ößtkorn [mm]

Verunreinigungen/ Zusätze Mittlere Korngröße [mm] von


bis

keine Zuschläge Bestand

Beschreibung


Kornform

<u>Gefüge</u>

a: braun gefärbte Gipsmasse b: Salzausfällung c: pallisadenartige Calcitkristalle Detailfoto 2

a: verdichtete Zone an der Oberfläche b: poröser Gipsstuck

D_25-1.jpg Fotodatei Detailbild 2

Kommentar

dichter feinporiger Gipsmörtel mit oberflächlicher Zone geschlossener Poren (siehe Detailfoto 2) In die Poren konnte das blaue Harz nicht eindringen.

Keine Zuschäge.

Die braunen Bereiche sind pigmentiert, vermutlich mit Ruß.

Poren sind homogen verteilt und relativ klein Größe 0,12 - 0,02 mm.

An der Rückseite des Stucks (Schichtdicke etwa 10 mm) sind deutliche Salzablagerungen und palisadenartige Calcitaufwachsungen zu sehen (siehe Detailfoto 1). Diese führen zu einem schalenartigen Ablösen des gesamten an sich stabilen Stucks.

> ((C) 2009 Thomas Köberle Nordstr. 39

Denkmalpflege Bauforschung 01099 Dresden

Dresden

0173 / 980 95 76

HfBK Dresden

Labor für Archäometrie

29.08.2012

REM/EDX (Philips XL 30 mit EDAX Fa. Ametek)

Angaben zur Probe:

- Material: Probe L_23 Leuben, Schloß, Innenputz (+Fassungen) aus Raum 012, Ostwand
- 2. Präparation: Querschliff, LeitC, mit Kohlenstoff bedampft

Angaben zu REM-Einstellungen:

- 1. Hochspannung: 20KV
- Spotsize: 6
 Detektor: BSE

Fragestellung: Kalkmörtel? Elementmapping

Abb.1: Makroaufnahme des Querschliffs mit Markierung der Messstelle

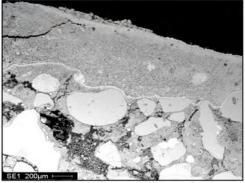
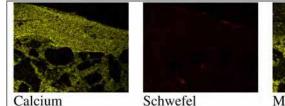
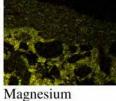




Abb. 2: Rückstreuelektronenbild

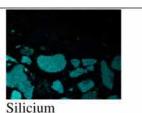


Abb. 3: Elementverteilungsbilder

→ Es handelt sich um einen Dolomitkalkmörtel mit silicatischem Zuschlag (Sand), die Malschichten enthalten Kalk, an der Oberfläche findet sich etwas Schwefel (Gips), eine Vergipsungsfront ist nicht zu beobachten.

HfBK Dresden

Labor für Archäometrie

29.08.2012

REM/EDX (Philips XL 30 mit EDAX Fa. Ametek)

Angaben zur Probe:

- Material: Probe L_25 Leuben, Schloß, Ostfassade, Unterstuck und Feinstuck vom Tympanon Relief
- 2. Präparation: Querschliff, LeitC, mit Kohlenstoff bedampft

Angaben zu REM-Einstellungen:

- 1. Hochspannung: 20KV
- Spotsize: 6
 Detektor: BSE

Fragestellung: dolomitischer Kalkmörtel? Elementmapping

Abb. 1: Makroaufnahme des Querschliffs mit Markierung der Messstelle

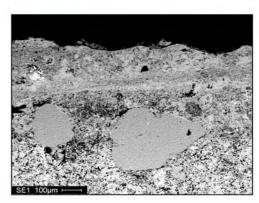


Abb. 2: Rückstreuelektronenbild

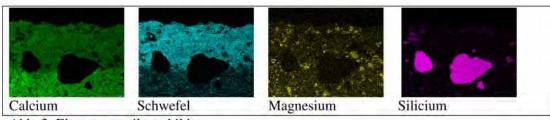


Abb. 3: Elementverteilungsbilder

→ Es handelt sich um einen Dolomitkalkmörtel mit silicatischem Zuschlag (Sand), von der Oberfläche her ist deutlich Sulfatbildung (Vergipsung) zu beobachten

Untersuchungsbericht

Labor für Archäometrie

Auftraggeber Dipl.-Rest. Arnulf Dähne

Objekt Schloss Dahlen

Datum des Berichts 30.08.2012

Proben/Fragestellung

Von der Mörtelprobe D_33 (Innen, Unterputz f. Stuck aus dem Weißen Salon, Ostwand) sollten Sieblinie, Mischungsverhältnis und Bindemittel untersucht werden.

Außerdem sollte die Porosität im Vergleich zu selbst hergestellten Gipsmörtel ermittel werden.

Untersuchungsmethodik

Die Mörtelprobe wurde bei 40 °C bis zur Massekonstanz getrocknet.

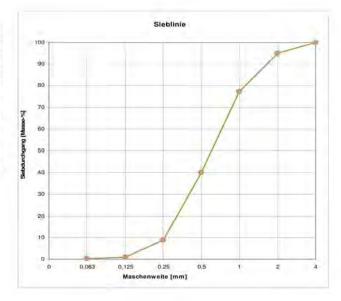
Die Behandlung mit Salzsäure (1+3) zur Abtrennung des säureunlöslichen Zuschlags für die Sieblinie erfolgte nach Wisser, S. und Knöfel, D. "Untersuchungen an historischen Putz und Mauermörteln" in Bautenschutz+Bausanierung 10. JG, S.124ff (*Methode liefert nur bei säureunlöslichen Zuschlägen richtige Ergebnisse*).

Zusätzlich erfolgten Säureaufschlüsse zur Untersuchung des Mischungsverhältnisses und der Bindemittelbestandteile nach DIN 52170 Teil 1 bis 4 (1980) an analysenfein gemahlenen Teilproben (unter Verwendung von Salzsäure 1+3). Weitere Parameter:

- CO₂-Gehalt und SO₃-gehalt mittels Kohlenstoff-Schwefel-Analysator (IR-Detektion nach Totalverbrennung) an der Gesamtprobe unter Vernachlässigung evtl. vorhandener org. Bestandteile (Daten ermittelt durch kiwa Bautest GmbH Dresden)
- Ca und Mg, im Bindemittel durch komplexometrische Titration

Porosität: Die Porosität wurde aus Roh- und Reindichte berechnet. Die Rohdichte wurde durch Unterwasserwägung an Mörtelstücken ermittelt, die Reindichte am aufgemahlenen Probenmaterial mittels Heliumpyknometer Pycnomatic ATC (Fa. Porotec) über Druckmessungen (ermittelt durch Institut für Baustoffe der TU Dresden).

Seite 2 von 2


Ergebnisse

Dichte und Porosität

	Rohdichte	Reindichte	Porosität	
D_33	1,713 g/cm ³	2,67 g/cm ³	35,8 %	
selbst hergestellter Gipsmörtel	1,544 g/cm ³	2,64 g/cm ³	41.5 %	

Sieblinie Probe D_33

	Siebdurchgang			
Siebgröße	kumulativ			
d [mm]	m-%	m-%		
0,063	0,15	0,15		
0,125	0,90	0,75		
0,25	8,75	7,85		
0,50	40,11	31,37		
- 1	77,12	37,01		
-2	94,94	17,82		
4	100,00	5,06		

Quantitative Analyse:

Gesamtmörtelprobe:

Glühverlust 1000 °C: 5,1 % CO₂-Gehalt: 1,93 % SO₃-Gehalt: 25,87 %

Ergebnisse Mischungsverhältnis und Bindemittelanalyse:

Mischungsverhältnis		
Salzsäureunlösliche Bestandteile	= Zuschlag	53,8 %
Salzsäurelösliche Bestandteile	= Bindemittel	46,2 %
Mischungsverhältnis im abgebundenen Zustand: B:Z		1:1,2
Bindemittelanalyse:	CaO	17,8 %
	MgO	0,2 %

Die Ergebnisse zeigen, dass der Gipsmörtel etwas Carbonat und zu einem sehr geringen Anteil Magnesium enthält.

Dr. Sylvia Hoblyn

UNTERSUCHUNGSBERICHT LABOR FÜR ARCHÄOMETRIE

Nr. STONECORE L1/09 Entwurf

Objekt Leuben, Schloss

Auftraggeber EU-ProJekt STONECORE

Dipl.Rest. Arnulf Dähne

Datum des Berichts 25.02.2009

Fragestellung

- Zusammensetzung von Salzausblühungen

Proben

Leuben, Schloss: L_13, L_14, L_15, L_16

Probenahme und Dokumentation durch Auftraggeber

Untersuchungsmethoden

Röntgen- Für die röntgenographische Phasenanalyse wurden etwa 10 mg

Pulverdiffraktometrie Probe manuell pulverisiert und auf einen Si-Einkristall-Probenträger

(XRD) mit Aceton aufgebracht.

Messung mit einem Siemens D5000 Diffraktometer mit Cu-K α -Strahlung bei 40 kV / 40 mA. Auswertesoftware: Diffrac plus.

Fachbereich II Studiengang Restaurierung Besucheranschrift Bürozentrum Bürgerwiese St. Petersburger Str. 15 D-01069 Dresden Fon (03 51) 4402 -107 Fax (03 51) 4402 250 Postanschrift Hochschule für Bildende Künste Dresden D-01288 Dresden

Ergebnisse

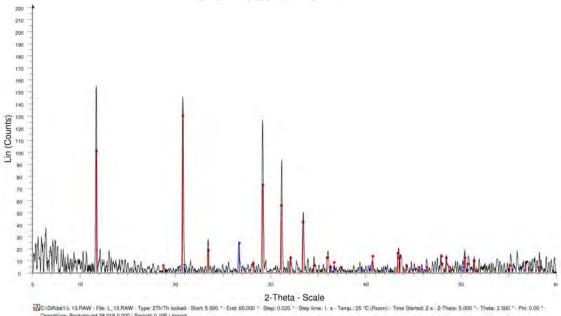
Tabelle 1: Salzproben Schloss Leuben, Untersuchung mittels XRD Zusammenfassung der Ergebnisse

Probe Nr.	Phasen	Interpretation
L_13	Gips, sehr wenig Quarz	
L_14	Kaliumnitrat, sehr wenig Quarz	
L_15	Hexahydrit (MgSO ₄ *6 H ₂ O)	
L_16	Epsomit (MgSO ₄ *7 H ₂ O)	

Messdiagramme: siehe Anhang

Dresden, 25.02.2009

Prof.Dr. Christoph Herm

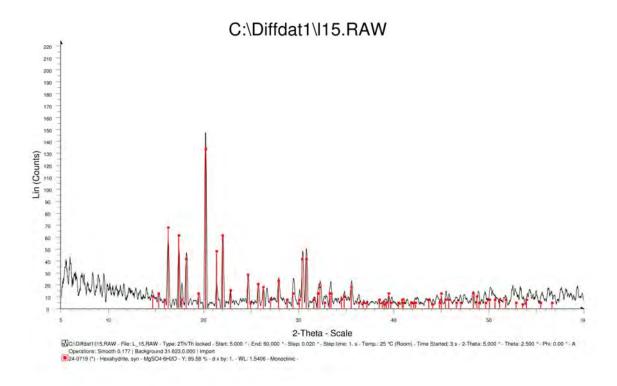

Dr. Sylvia Hoblyn

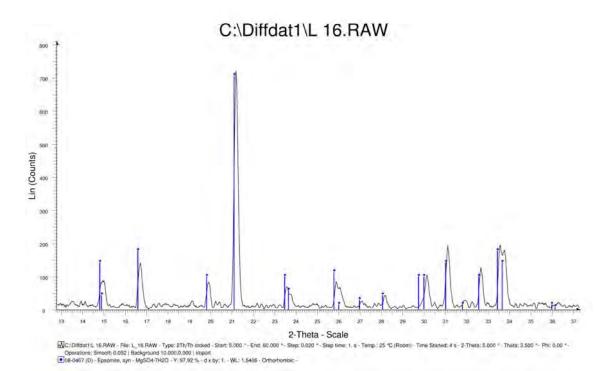
Archäometrie und naturwissenschaftliche Grundlagen

HfBK Dresden Nr. STONECORE L1/09

Anhang

C:\Diffdat1\L 13.RAW


Conditidat VL 13.RAW - File: L_13.RAW - Type: 2Th/Th locked - Start: 5.000 * - Erict: 60.000 * - Step 10.020 * - Step 1im Operations: Background 38.019,0.0001 Smooth 0.105 | Import ■36-0432 (0) - Oppsam - 0.2604-2420 - 7: 333 * - 4 x by: 1. W.L. 1.5406 - Monocinic - Vib PDF 1.7 - S-0.91,2 % - 1.5406 - Monocinic - Vib PDF 3.1 - S-0.9 8.8 % - 4 x by: 1. W.L. 1.5406 - Hexagonal - Vib PDF 3.1 - S-0.8 % - 4 x by: 1. W.L. 1.5406 - Hexagonal - Vib PDF 3.1 - S-0.8 % - 4 x by: 1. W.L. 1.5406 - Hexagonal - Vib PDF 3.1 - S-0.8 % - 4 x by: 1. W.L. 1.5406 - Hexagonal - Vib PDF 3.1 - S-0.8 % - 4 x by: 1. W.L. 1.5406 - Hexagonal - Vib PDF 3.1 - X by: 1. W.L. 1.5406 - Hexagonal - Vib PDF 3.1 - X by: 1. W.L. 1.5406 - Monocinic - Vib PDF 3.1 - X by: 1. W.L. 1.5406 - Monocinic - Vib PDF 3.1 - X by: 1. W.L. 1.5406 - Monocinic - Vib PDF 3.1 - X by: 1. W.L.


C:\Diffdat1\I14.RAW 120 90 Lin (Counts) 20 2-Theta - Scale

Conditional 114 RAW - Fie: L_14 RAW - Type: 2Th/Th locked - Start: 5:000 * - End: 60:000 * - Step: 0.020 * - Step time: 1, a - Temp.: 25 °C (Room) - Time Started: 2 s - 2-Theta: 5:000 * - Theta: 2:500 * - Phil 0.000 * - A Operations: Stackground 31:823,0000 | Smooth 0.117 | S

HfBK Dresden Nr. STONECORE L1/09

3/4

HfBK Dresden Nr. STONECORE L1/09

4/4

UNTERSUCHUNGSBERICHT LABOR FÜR ARCHÄOMETRIE

Nr. STONECORE D1/09 Objekt Dahlen, Schloss

Auftraggeber EU-ProJekt STONECORE

Dipl.Rest. Arnulf Dähne

Datum des Berichts 25.02.2009

Fragestellung

- Zusammensetzung von Salzausblühungen

Proben

Leuben, Schloss: D_09, D_10, D11_, D12, D_13, D_14, D_15

Probenahme und Dokumentation durch Auftraggeber

Untersuchungsmethoden

Röntgen- Für die röntgenographische Phasenanalyse wurden etwa 10 mg Pulverdiffraktometrie Probe manuell pulverisiert und auf einen Si-Einkristall-Probenträger

(XRD) mit Aceton aufgebracht.

Messung mit einem Siemens D5000 Diffraktometer mit Cu-K α Strahlung bei 40 kV / 40 mA. Auswertesoftware: Diffrac plus.

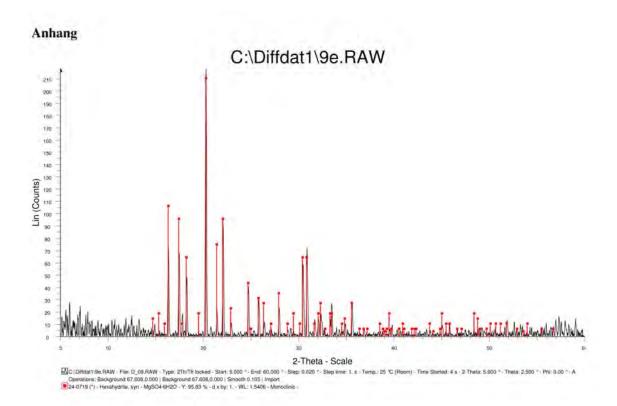
Fachbereich II Studiengang Restaurierung Besucheranschrift Bürozentrum Bürgerwiese St. Petersburger Str. 15 D-01069 Dresden Fon (03 51) 4402 -107 Fax (03 51) 4402 250 Postanschrift Hochschule für Bildende Künste Dresden D-01288 Dresden

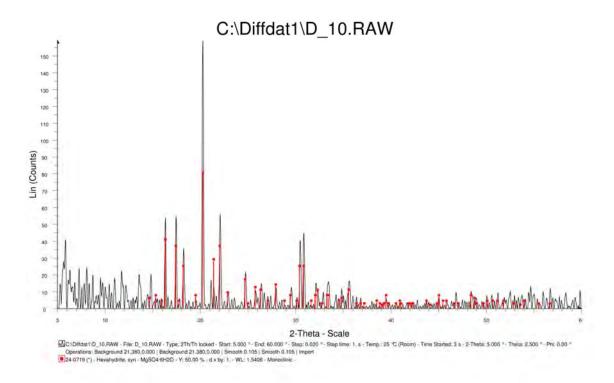
Ergebnisse

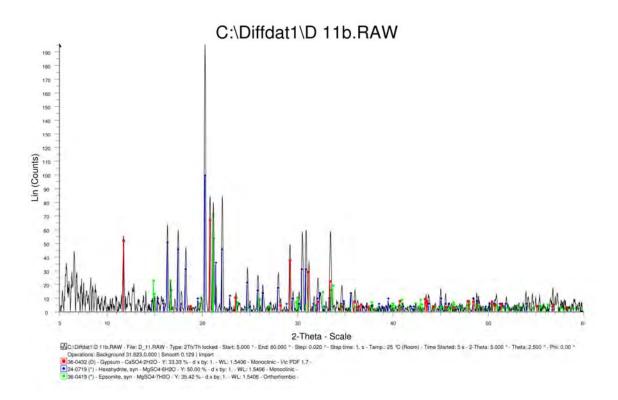
Tabelle 1: Salzproben Schloss Dahlenrsuchung mittels XRD Zusammenfassung der Ergebnisse

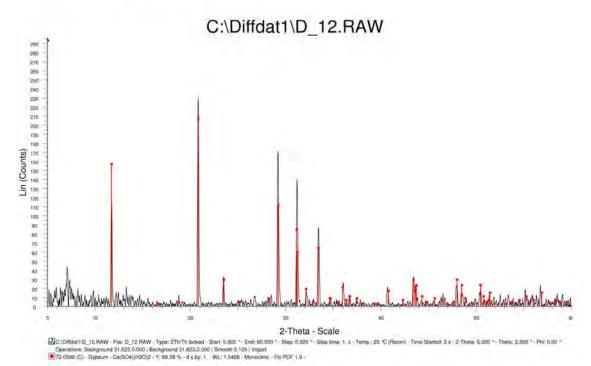
Probe Nr.	Phasen	Interpretation
D_09	Hexahydrit (MgSO ₄ *6 H ₂ O)	
D_10	Hexahydrit (MgSO ₄ *6 H ₂ O)	
D_11	Hexahydrit, Gips, Epsomit (MgSO ₄ *7 H ₂ O)	
D_12	Gips	
D_13	Epsomit,Hexahydrit,Gips	
D_14	Hexahydrit, Quarz	
D_15	Gips	

Messdiagramme: siehe Anhang

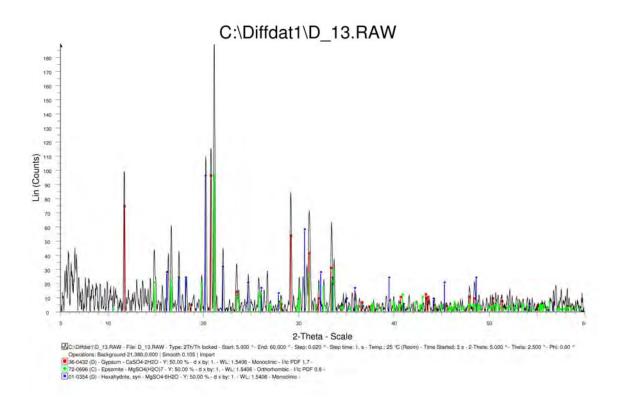

Dresden, 25.02.2009

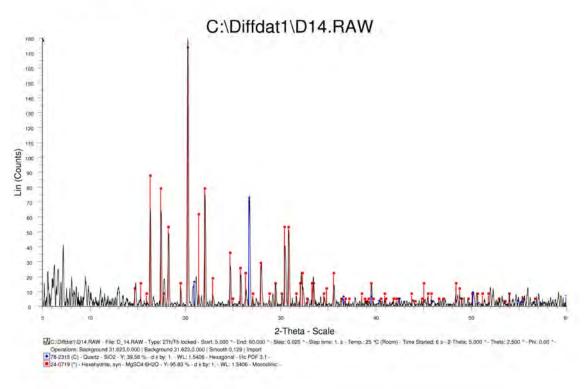

Prof.Dr. Christoph Herm


Dr. Sylvia Hoblyn

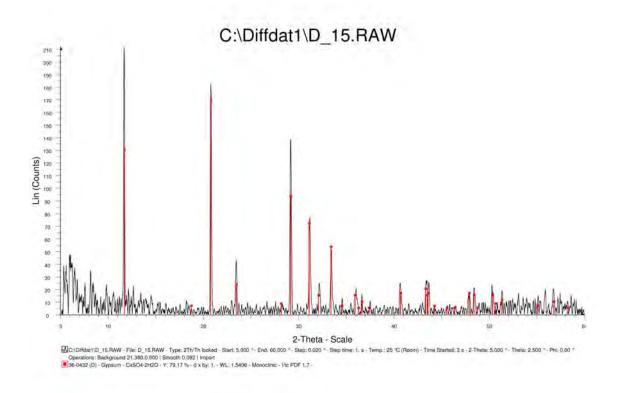

Archäometrie und naturwissenschaftliche Grundlagen

HfBK Dresden Nr. STONECORE D1/09





HfBK Dresden Nr. STONECORE D1/09


4/6

HfBK Dresden Nr. STONECORE D1/09

5/6

IMSL

INDUSTRIAL MICROBIOLOGICAL SERVICES LTD

STUDY REPORT: Determination of the Susceptibility of CaLoSil Treatments

Fortified with Carboxymethyl Cellulose to Mould Growth

CLIENT: European Union Project - Stonecore

REPORT NO: Stonecore Interim Report, Deliverable 3.4.1A

DATED: 12 August 2011

Industrial Microbiological Services Ltd Registered in England No 3264423 Registered Office The Oddfellows Hall Oxford Road Reading Berkshire RG1 7NG

Anhang B

Contents

1	Introduction	1
2	Test Materials	1
3	Methods	1
3.1	BS3900 Part G6: Inoculation / Incubation of Materials	1
4	Results / Discussion	2
5	References	8
6	Raw Data	8
7	Exclusion of Liability	9

1 Introduction

In some applications, CaLoSil can leave a white residue on the surface of treated materials. This 'white haze' is undesirable and, while it can be removed through post treatments / processes (eg use fo citric acid, cleaning etc), preventing its occurrence would be more desirable. It has been suggested that the haze form either through a too rapid rate of evaporation of the solvent used to carry the CaOH into the substrate or due to back-migration to the surface. The addition of carboxymethyl cellulose (CMC) to the treatment solution just prior to addition was found to help prevent the formation of the haze. However, such an addition leaves a carbon-based residue on the surface of material that have been treated and this could provide a substrate for subsequent fungal growth.

This report details a study performed to assess the susceptibility of plaster that had been treated with CaLoSil fortified with CMC to fungal growth using the method described in BS3900 Part G6. The standard microbial consortium employed in this method was used in place of a consortium derived from fungi isolated from one of the reference objects (in this instance Dahlen Castle) as the latter were isolated from deteriorated stone and plaster and would not necessarily have been exposed to cellulose-based substrates. In contrast, a number of the isolates used in BS3900 Part G6 will readily colonise cellulose containing materials and are therefore far more relevant to the purpose of the study (they are all commonly found in the environment and would readily colonise a substrate were it suitable for gowth).

2 Test Materials

Samples of gypsum plaster that had been treated with CaLoSil fortified with CMC were supplied by University of Fine Arts, Dresden. A sample of untreated gypsum-based building board (paper-faced) was supplied by IMSL to act as a reference material.

3 Methods

Anti-fungal activity was determined using BS3900 Part G6. Individual panels were inoculated with a consortium of fungi then incubated under humid conditions to stimulate their growth.

3.1 BS3900 Part G6: Inoculation / Incubation of Materials

Duplicate panels (eitehr as supplied or ca 100 mm x 50 mm) of each material were inoculated (20 μ l cm²) with a mixed spore suspension (> 10^5 spores ml¹ of each species) of the fungi described in BS3900 part G6 (see Table 1 and Ref. 1 for details). The samples were then allowed to stand at ambient room temperature overnight and then transferred to humid chambers (each containing 200g sterile vermiculite moistened with 700g sterile water) and incubated in the dark at 20°C for up to 12 weeks. The moisture content of the chambers was checked gravimetrically at weekly intervals and adjusted as necessary.

At intervals the surface of each test panels was inspected for growth and rated in accordance with BS3900 Part G6 and the appearance recorded photographically.

Stonecore Interim Report, Deliverable 3.4.1A: Page 1 of 6

Table 1: Fungal Inoculum (BS3900 Part G6)

Species	Reference Number
Alternaria alternata	IMI342924
Aspergillus versicolor	IMI45554
Aureobasidium pullulans	IMI45533
Cladosporium cladosporioides	IMI178517
Penicillium purpurogenum	IMI178519
Phoma violacea	IMI49948ii
Rhodotorula rubra	NCYC1659
Ulocladium attrum	IMI342923
Sporobolomyces roseus	NCYC 717
Rhodotorula rubra	NCYC 1659

4 Results / Discussion

The ratings of the test to BS3900 Part G6 are shown in Table 2. The gross appearance and microscopical appearance of the test specimens are shown in Plates 1 - 5.

Table 3: Fungal Growth Ratings After Incubation

Coating	After 12 weeks incubation
Untreated Building Board	5
Treated Gypsum Plaster	0

KEY 0 = No Growth, 1 = Trace to 1%, 2 = 1% - 10%, 3 = > 10% - 30%, 4 = > 30% - 70%, 5 = > 70%

It can be seen from the results above and Plate 1 below that the untreated paper-faced building board supported growth of a range of fungi following incubation. It can also be seen from Plate 2 that no growth was observed on the treated gypsum plaster and that ungerminated spores were visible on the surface. It is concluded that the CMC introduced during the treatment did not increase the susceptibility of the plaster to fungal growth.

Stonecore Interim Report, Deliverable 3.4.1A: Page 2 of 6

Plate 1: Untreated Building Board

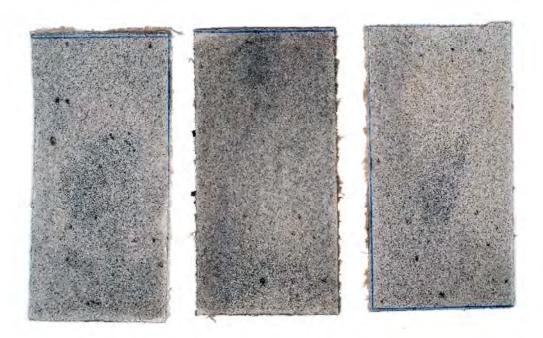
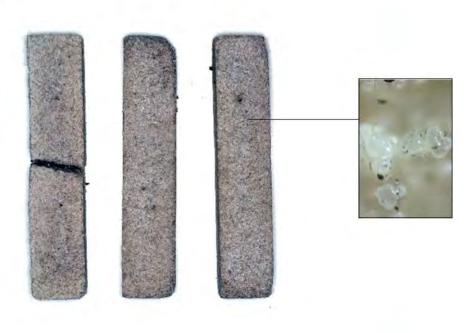



Plate 2: Treated Gypsum Plaster

Anhang B

5 References

BS3900 Part G6: Assessment of Resistance to Fungal Growth, (1989) BSI, London

6 Raw Data

The raw data for this study will be held in file IMSL/2010/07/004.1B in the Archive of IMSL at Pale Lane, Hartley Wintney, Hants, RG27 8DH, UK for 6 years from the date of this report unless other specific instructions are given.

Stonecore Interim Report, Deliverable 3.4.1A: Page 5 of 6

7 Exclusion of Liability

The contents of this report are subject to the standard terms and conditions of IMSL as displayed on the reverse of the invoice. Specific attention is drawn to Section 10 restated below.

- (a) IMSL warrants that the results as stated in this Report are accurate in so far as they relate to the Samples as received in the laboratory of IMSL. Except in respect of death or personal injury caused by IMSL's negligence IMSL accepts no other liability or responsibility to any party whatsoever (whether caused by the negligence of IMSL, its employees, or agents or otherwise) arising out of or in connection with the provision of this Report. In particular, but without prejudice in the generality of the foregoing IMSL shall have no liability or responsibility whatsoever in respect of or in any way by reference to:-
 - (i) the taking of the Samples (unless this is done by an agent of IMSL), the accuracy of the Samples or their suitability for the purpose(s) for which they were taken or applied, the designation, handling, storage or transport of the Samples prior to their delivery to the laboratory of IMSL or their condition upon such delivery
 - (ii) the interpretation of the Report and / or the application of the results as stated and / or the accuracy of any advices based thereon
 - (iii) any (or any alleged) lack of competence, negligence, failure or breach of duty on the part of any person engaged in or responsible for any of the activities or functions referred to above whether or not such agent is described as an agent of IMSL or otherwise. All such persons shall be deemed to be agents of the Customer and not to be agents or representatives in any capacity of IMSL
 - (iv) incorrect information or data supplied by the Customer relating to the Samples
 - (v) loss of or damage to the Samples when in the possession of IMSL
 - (vi) delay in provision of the Service or mis-delivery or non-delivery of any Report or Sample.
- (b) In the event of any claim arising against IMSL, IMSL expressly excludes liability for any consequential loss or damage or any loss of value, profit, business, revenue, goodwill, yields, Weathershield Smooth Masonry Paintion or anticipated saving which may arise in respect of or in any way by reference to any Report, analysis, advice or information given verbally by any person or contained in any Report, leaflet, book, pamphlet, brochure or any other document, whether prepared, published or issued by IMSL or otherwise.

Stonecore Interim Report, Deliverable 3.4.1A: Page 6 of 6

Versicherung

Unterschrift

(gemäß § 5 Abs. 1 der Promotionsordnung)

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt. Die geltenden gesetzlichen Bestimmungen und die Ordnung der Hochschule für Bildende Künste Dresden zur Sicherung guter künstlerischer und wissenschaftlicher Praxis in der geltenden Fassung erkenne ich an und verpflichte mich zu deren Einhaltung.

Tabellarischer Lebenslauf

Persönliche Daten:

Name: Dähne

Vornamen: Arnulf Christian

Geburtsdatum: 15.02.1972

Geburtsort: Zittau/ Sachsen

Ausbildung, wissenschaftlicher und beruflicher Werdegang:

1978-1988 Polytechnische Oberschule Hainewalde/ Oberlausitz

1988-1990 Erweiterte Oberschule "Glück Auf" in Dippoldiswalde

1990 Abitur

1991-1993 Studium Architektur an der Hochschule für Architektur und Bauwe-

sen in Weimar

1993-1996 studienvorbereitende Praktika bei Diplomrestauratoren in Thüringen

und Sachsen

1996-2001 Studium Restaurierung an der Hochschule für Bildende Künste

(HfBK) Dresden, Fachklasse Restaurierung von Wandmalerei und

Architekturfarbigkeit bei Prof. R. Möller und Prof. H. Leitner

07/ 2001 Diplom an der HfBK Dresden

Thema: Das Hauptportal der ehemaligen Klosterkirche Paulinzella/

Thüringen

Referent: Prof. H. Leitner, Korreferent: Prof. R. Möller

seit 2001 freiberuflicher Restaurator in der pons asini Partnergesellschaft Mel-

lingen/ Altenburg (Thüringen)

2001-2007 Assistent bei Prof. H. Leitner, HfBK Dresden

2002-2004 Beteiligung an einem Projekt der Gesellschaft für Technische Zu-

sammenarbeit (GTZ): "Aufbau eines Aus- und Weiterbildungszent-

rums für Restauratoren in Kairo"

2005 - 2008	Mitarbeit am internationalen EU-Projekt "MEDISTONE –
	Preservation of Ancient Mediterranean Sites in Terms of their Or-
	namental and Building Stone" / Projektarbeiten in Algerien, Ägypten
	und Marokko.
2006	befristete Tätigkeit am Landesamt für Denkmalpflege Mecklenburg-
	Vorpommern (Arbeitsgebiet: computergestützte Kartierung)
2006-2011	fachliche Betreuung der Sommerschulen der HfBK Dresden, Fach-
	klasse Konservierung und Restaurierung von Wandmalerei und Ar-
	chitekturfarbigkeit (Projektleitung: Prof. H. Leitner, Prof. T. Danzl)
2007-2008	fachliche Leitung der Fachklasse Konservierung und Restaurierung
	von Wandmalerei und Architekturfarbigkeit an der HfBK Dresden
	(Vakanzvertretung)
2008-2011	Lehraufträge an der HfBK Dresden
2009-2011	Lehraufträge an der Staatlichen Akademie der Bildenden Künste
	Stuttgart, Studiengang Studiengang Konservierung und Restaurie-
	rung von Wandmalerei, Architekturoberfläche und Steinpolychromie
2009-2011	Wissenschaftlicher Mitarbeiter an der HfBK Dresden, Mitarbeit am
	internationalen EU-Projekt "STONECORE - Stone Conservation for
	Refurbishment of Buildings"
2010	Lehrauftrag an der Universität Pardubice, Fakultät für Restaurierung

Danksagung

Mein Dank gilt zuerst meinem Doktorvater, Herrn Prof. Dr. Christoph Herm, für die wissenschaftliche Betreuung, für Beratung und Unterstützung sowie für die Begutachtung meiner Doktorarbeit. Die Ermöglichung dieser Arbeit ist zudem der Initiative von Herrn Prof. Heinz Leitner† und Herrn Prof. Ulrich Schießl† zu verdanken, sowie dem Leiter des EU-Forschungsprojektes STONECORE, Herrn Prof. Dr. Gerald Ziegenbalg und der Förderung dieses Projektes durch die Europäische Union.

Herrn Prof. Roland Lenz danke ich für alle wertvollen Ratschläge und für die Übernahme des zweiten Gutachtens.

Großer Dank gebührt Herrn Thomas Köberle für seine unermüdliche, wertvolle Hilfe und Mitarbeit sowie dem Team des Archäometrielabors der HfBK Dresden für alle Unterstützung. Herzlich danke ich allen STONECORE Projektpartnern für Zusammenarbeit, Erfahrungsund Ergebnisaustausch, besonders seien die unmittelbar an dieser Arbeit Beteiligten genannt: Herr Prof. Dr. Miloš Drdácký und seine Mitarbeiterinnen vom Institut für Theoretische und Angewandte Mechanik Prag (ÚTAM), Herr Rolf Krompholz und sein Team von der Geotron Electronic GmbH und Herr Pete Askew und Mitarbeiter von Industrial Microbiological Services LTD.

Für die Ermöglichung der praktischen Objektarbeit ist dem Sächsischen Landesamt für Denkmalpflege, der Stadtverwaltung Dahlen mit Herrn Bürgermeister Löwe, dem Schlossund Parkverein Dahlen e.V. sowie dem Schlossverein Leuben e.V., besonders Herrn Schurig, sehr zu danken.

Für die Kooperation danke ich Herrn Prof. Emmerling und Frau Dipl. Rest. Sandra Bucher-Fiuza vom Chinaprojekt des Bayerischen Landesamtes für Denkmalpflege und der Technischen Universität München, Lehrstuhl für Restaurierung.

Für mancherlei Rat und Hilfe danke ich Herrn Dipl. Rest Thomas Schmidt, Frau Dipl. Rest.(FH) Mareike Schmidt, Herrn Alexander Schneider, Frau Kerstin Riße und Frau Dipl. Rest. Andrea Schmid.

Schließlich möchte ich meinen Kollegen der pons asini Partnergesellschaft und meiner Familie für die massive Unterstützung während all der Jahre herzlich danken.